[OpenCV-Python] 9 图像的基础操作】的更多相关文章

1.访问图像像素 1)灰度图像 2)彩色图像 OpenCV中的颜色顺序是BGR而不是RGB. 访问图像的像素在OpenCV中就是访问Mat矩阵,常用的有三种方法. at定位符访问 Mat数据结构,操作灰度图像像素点: int gray_value = (int) image.at<uchar>(i , j) ; 操作彩色图像像素点: int color_value = (int) image.at<Vec3b>(i , j) [k]; 指针访问 ; i < mat.rows;…
打开文件的三种方式: open(r'E:\学习日记\python\code\文件的简单操作.py') open('E:\\学习日记\\python\\code\\文件的简单操作.py') open('E:/学习日记/python/code/文件的简单操作.py') #字符串前面加一个r代表原生的raw # rt,wt,at:r读,w.a写,t表示以文本打开 eg: >>> res = open(r'E:\test.txt','r',encoding='utf-8') >>&g…
目标 获取像素值并修改 获取图像的属性(信息) 图像的ROI() 图像通道的拆分及合并 为图像扩充边缘 几乎所有以上的操作,与Numpy 的关系都比与OpenCV 的关系更加紧密,因此熟练Numpy 可以帮助我们写出性能更好的代码. 获取像素值并修改 代码: # import cv2 import numpy as np # 首先打开一张图片 img=cv2.imread('Koala.jpg') # 在图片中获取一个像素点 px=img[100,100] # 打印出像素值,BGR图片显示[B,…
线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果.做法很简单.首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像.然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值.这样就完成了滤波过程. 对图像和滤波矩阵进行逐个元素相乘再求和的操作就相当于将一个二维的函数移动到另一个二维函数的所有位置,这个操作就叫卷积或者协相关.卷积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻…
1.对灰度图像的像素操作: #include<iostream> #include<opencv2/opencv.hpp> using namespace std; using namespace cv; int main(int argc, char **argv) { Mat src = imread("D:/meinv.jpg"); namedWindow("源图像",CV_WINDOW_AUTOSIZE); imshow("…
一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你儿子. 还有其他物品.什么桌子带腿.镜子反光能在里面倒影出东西,各种各样的特征,我们通过学习.归纳,自然而然能够很快识别分类出新物品. 而没有学习训练过的机器就没办法了. 但是图像是一个个像素点组成的,我们就可以通过不同图像之间这些差异性就判断两个图的相似度了.其中颜色特征是最常用的,(其余常用的特…
Django创建数据库操作 django流程之model实例 settigs.py:更改Django2.0.1的配置,更新为之前的路径配置 'DIRS': [os.path.join(BASE_DIR, 'templates')], # 设置templates的路径为Django以前版本 # 'DIRS': [], # 注释掉该行,此为Django 2.0.1最新版本 # 'django.middleware.csrf.CsrfViewMiddleware', views.py # Create…
直接用matplotlib画出直方图 def plot_demo(image): plt.hist(image.ravel(), 256, [0, 256]) # image.ravel()将图像展开,256为bins数量,[0, 256]为范围 plt.show() 图像直方图 def image_hist(image): color = ('blue', 'green', 'red') for i, color in enumerate(color): # 计算出直方图,calcHist(i…
一.函数简单介绍 1.warpAffine-图像放射变换(平移.旋转.缩放) 函数原型:warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None) src:原图像矩阵: M:变换矩阵: dszie:图像尺寸(大小) 其他參数默认就可以. 2.flip-图像翻转 函数原型:flip(src, flipCode, dst=None) sre:原图像矩阵. flipCode:翻转方向:1:水平翻转…
一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x,y方向上的偏导数和偏移构成),有一阶导数(sobel算子)和二阶导数(Laplace算子) # 用于求解图像边缘,一阶的极大值,二阶的零点 # 一阶偏导在图像中为一阶差分,再变成算子(即权值)与图像像素值乘积相加,二阶同理 def sobel_demo(image): grad_x = cv.Sob…