Spark详解(09) - Spark调优】的更多相关文章

基本概念:PermGen space:全称是Permanent Generation space.就是说是永久保存的区域,用于存放Class和Meta信息,Class在被Load的时候被放入该区域Heap space:存放Instance.GC(Garbage Collection)应该不会对PermGen space进行清理所以如果你的APP会LOAD很多CLASS的话,就很可能出现PermGen space错误Java Heap分为3个区,Young,Old和Permanent.Young保…
----本节内容------- 1.遗留问题解答 2.Spark调优初体验 2.1 利用WebUI分析程序瓶颈 2.2 设置合适的资源 2.3 调整任务的并发度 2.4 修改存储格式 3.Spark调优经验 3.1 Spark原理及调优工具 3.2 运行环境优化 3.2.1 防止不必要的分发 3.2.2 提高数据本地性 3.2.3 存储格式选择 3.2.4 选择高配机器 3.3 优化操作符 3.3.1 过滤操作导致多小任务 3.3.2 降低单条记录开销 3.3.3 处理数据倾斜或者任务倾斜 3.…
浅谈Spark应用程序的性能调优 :http://geek.csdn.net/news/detail/51819 下面列出的这些API会导致Shuffle操作,是数据倾斜可能发生的关键点所在 1. groupByKey 2. reduceByKey 3. aggregateByKey 4. sortByKey 5. join 6. cogroup 7. cartesian 8. coalesce 9. repartition 10. repartitionAndSortWithinPartiti…
1.Spark企业级应用开发和调优 Spark项目编程优化历程记录,主要介绍了Spark企业级别的开发过程中面临的问题和调优方法.包含合理分配分片,避免计算中间结果(大数据量)的collect,合理使用map,优化广播变量等操作,降低网络和磁盘IO,提高计算效率. 2.核心技术优化方法对比 首先如下图(2.1),Spark应用开发在集群(伪分布式)中的记录,每一种不同颜色的折线代表一个分布式机器 最终,图4中四条折线并行达到峰值(即CPU100%).降低了处理时间,增大了处理效率. 2.1.重要…
1.前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Sp…
小甲鱼PE详解之输出表(导出表)详解(PE详解09) 当PE 文件被执行的时候,Windows 加载器将文件装入内存并将导入表(Export Table) 登记的动态链接库(一般是DLL 格式)文件一并装入地址空间,再根据DLL 文件中的函数导出信息对被执行文件的IAT 进行修正. ( 基础补充:很多朋友可能看到这里会有点懵,各位看官请允许小甲鱼啰嗦一下,照顾初学者.我们都明白Windows 在加载一个程序后就在内存中为该程序开辟一个单独的虚拟地址空间,这样的话在各个程序自己看来,自己就拥有几乎…
原文连接 http://xiguada.org/spark/ Spark概述 当前,MapReduce编程模型已经成为主流的分布式编程模型,它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上.但是MapReduce也存在一些缺陷,如高延迟.不支持DAG模型.Map与Reduce的中间数据落地等.因此在近两年,社区出现了优化改进MapReduce的项目,如交互查询引擎Impala.支持DAG的TEZ.支持内存计算Spark等.Spark是UC Berkeley AM…
  在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作业的资…
Hive默认使用的计算框架是MapReduce,在我们使用Hive的时候通过写SQL语句,Hive会自动将SQL语句转化成MapReduce作业去执行,但是MapReduce的执行速度远差与Spark.通过搭建一个Hive On Spark可以修改Hive底层的计算引擎,将MapReduce替换成Spark,从而大幅度提升计算速度.接下来就如何搭建Hive On Spark展开描述. 注:本人使用的是CDH5.9.1,使用的Spark版本是1.6.0,使用的集群配置为4个节点,每台内存32+G,…
本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质是什么,以及 Spark 在性能调优部份的要点,这两点让在进入性能调优之前都是一个至关重要的问题,它的本质限制了我们调优到底要达到一个什么样的目标或者说我们是从什么本源上进行调优.希望这篇文章能为读者带出以下的启发: 了解大数据性能调优的本质 了解 Spark 性能调优要点分析 了解 Spark 在…