numpy的操作】的更多相关文章

Numpy 基础操作¶ 以numpy的基本数据例子来学习numpy基本数据处理方法 主要内容有: 创建数组 数组维度转换 数据选区和切片 数组数据计算 随机数 数据合并 数据统计计算 In [1]: import numpy as np   创建一维数组¶ In [2]: data = np.arange(15) data Out[2]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])   reshape进行维度转换¶ dat…
Numpy 数组操作 Numpy 中包含了一些函数用于处理数组,大概可分为以下几类: 修改数组形状 翻转数组 修改数组维度 连接数组 分割数组 数组元素的添加与删除 修改数组形状 函数 描述 reshape 不改变数据的条件下修改形状 flat 数组元素迭代器 flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组 ravel 返回展开数组 numpy.reshape numpy.reshape 函数可以在不改变数据的条件下修改形状,格式如下: numpy.reshape(arr,…
NumPy基础操作(1) (注:记得在文件开头导入import numpy as np) 目录: 数组的创建 强制类型转换与切片 布尔型索引 结语 数组的创建 相关函数 np.array(), np.zeros(), np.zeros_like(), np.ones(), np.ones_like(), np.empty(), np.asarray() 调用方法 data1 = [1.2, 23, 24, 1.8] arr1 = np.array(data1) print(arr1) print…
NumPy基础操作(3)--代数运算和随机数 (注:记得在文件开头导入import numpy as np) 目录: NumPy在矩阵运算中的应用 常用矩阵运算函数介绍 编程实现 利用NumPy生成随机数以及随机漫步 常用随机数生成函数介绍 编程实现 随机漫步编程实现 NumPy在矩阵运算中的应用 常用矩阵运算函数介绍 常用的numpy函数 diag 将一维数组转换为方阵,一维数组元素为方阵对角线元素 dot 矩阵点乘运算 trace 计算对角线元素的和 det 计算矩阵的行列式 eig 计算方…
""" Numpy 数组操作 修改数组形状 函数 描述 reshape 不改变数据的条件下修改形状 flat 数组元素迭代器 flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组 ravel 返回展开数组 """ import numpy as np ''' numpy.reshape numpy.reshape 函数可以在不改变数据的条件下修改形状,格式如下: numpy.reshape(arr, newshape, order=…
NumPy基础操作(2) (注:记得在文件开头导入import numpy as np) 目录: 写在前面 转置和轴对换 NumPy常用函数 写在前面 本篇博文主要讲解了普通转置array.T.轴对换array.swapaxes().高维转置array.transpose().绝对值函数np.abs().np.maximum().np.argmax().np.argmin()等函数的调用方法和注意事项 转置和轴对换 array.T arr = np.arange(16).reshape((4,4…
python中numpy矩阵运算操作大全(非常全) //2019.07.10晚python矩阵运算大全1.矩阵的输出形式:对于任何一个矩阵,python输出的模板是:import numpy as np #引入numpy模块np1=np.array([[1,2,3],[1,3,4],[1,6,2]...]) #数组化矩阵形式print(np1) #输出矩阵2.对于矩阵的各种操作(np1代表矩阵):注意:操作矩阵之前需要引入numpy的linalg模块,语句如下:from numpy.linalg…
学机器学习做点小笔记,都是Python的NumPy库的基本小操作,图书馆借的书看到的,怕自己还了书后忘了,就记下来. 一般习惯导入numpy时使用 import numpy as np ,不要直接import,会有命名空间冲突.比如numpy的array和python自带的array. numpy下有两个可以做矩阵的东西,一个叫matrix,一个叫array.matrix指定是二维矩阵,array任意维度,所以matrix是array的分支,但是这个matrix和matlab的矩阵很像,操作也很…
目录 1. 如何获取满足条设定件的索引 2. 如何将数据导入和导出csv文件 3. 如何保存和加载numpy对象 4. 如何按列或行拼接numpy数组 5. 如何按列对numpy数组进行排序 6. 如何用numpy处理日期 7.高阶numpy函数介绍 1. 如何获取满足条设定件的索引 # 定义数组 import numpy as np arr_rand = np.array([8, 8, 3, 7, 7, 0, 4, 2, 5, 2]) #根据数组是否大于4,满足为True,不满足为False…
一.改变图片每个像素点每个通道的灰度值 (一) 代码如下: #遍历访问图片每个像素点,并修改相应的RGB import cv2 as cv def access_pixels(image): print(image.shape) height = image.shape[0] width = image.shape[1] channels = image.shape[2] print("width: %s height: %s channels: %s"%(width, height,…