首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
pandas 实现rfm模型
】的更多相关文章
pandas 实现rfm模型
import pandas as pd import numpy as np df = pd.read_csv('./zue_164466.csv') df['ptdate'] = pd.to_datetime(df['ptdate'],format='%Y-%m-%d') df['dateDiff'] = pd.to_datetime('today')-df['ptdate'] df['dateDiff'] = df['dateDiff'].dt.days R_Agg = df.groupby…
RFM模型的变形LRFMC模型与K-means算法的有机结合
应用场景: 可以应用在不同行业的客户分类管理上,比如航空公司,传统的RFM模型不再适用,通过RFM模型的变形LRFMC模型实现客户价值分析:基于消费者数据的精细化营销 应用价值: LRFMC模型构建之后使用了经典的聚类算法-K-Means算法来对客户进行细分,而不是传统的来与参考值对比进行手工分类,使得准确率和效率得到了大大提升,从而实现客户价值分析,进行精准的价格和服务设置: 经常买机票的朋友不知道有没有发现,机票的价格通常“阴晴不定”.3个月前是一个价格,2个月1个月1周前又是另一个价格:有…
案例(一) 利用机器算法RFM模型做用户价值分析
一.案例背景 在产品迭代过程中,通常需要根据用户的属性进行归类,也就是通过分析数据,对用户进行归类,以便于在推送及转化过程中获得更大的收益. 本案例是基于某互联网公司的实际用户购票数据为研究对象,对用户购票的时间,购买的金额进行了采集,每个用户用手机号来区别唯一性.数据分析人员根据用户购买的时间和金额,通过建立RFM模型,来计算出用户最近最近一次购买的打分,用户购买频率的打分,用户购买金额的打分,然后根据三个分数进行一个加权打分,和综合打分.业务人员可以根据用户的打分情况,对不同的用户进行个…
RFM模型——构建数据库营销的商业战役!(转)
RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额.一般原始数据为3个字段:客户ID.购买时间.购买金额,用数据挖掘软件处理,加权(考虑权重)得到RFM得分,对得分排序,输出营销名单topN! 上图来自于@数据挖掘与数据分析 下面我们采用IBM Modeler 14.1版本操作RFM模型:(采用数据挖掘技术来分析RFM是一件简单的工作,因为软件非常智能化,或者说基…
数据挖掘应用案例:RFM模型分析与客户细分(转)
正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模型的交易数据要求. 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency).消费频率(Frequency).消费金额(Monetary). 我早期两篇博文已详述了RFM思想和IBM Modeler操作…
RFM模型及R语言实现
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.基本概念 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency).消费频率(Frequency).消费金额(Monetary). RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间…
使用ML.NET实现基于RFM模型的客户价值分析
RFM模型 在众多的客户价值分析模型中,RFM模型是被广泛应用的,尤其在零售和企业服务领域堪称经典的分类手段.它的核心定义从基本的交易数据中来,借助恰当的聚类算法,反映出对客户较为直观的分类指示,对于没有数据分析和机器学习技术支撑的初创企业,它是简单易上手的客户分析途径之一. RFM模型主要有三项指标: Recency:最近消费时间间隔 Frequency:消费频率 Monetary:消费金额 我们为客户在这三项指标上进行打分,那么总共会有27种组合的可能,使用K-Means算法,能够缩减到指定…
RFM模型
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share RFM模型---最有价值客户 评价一个客户是否好坏有上万个变量,但这些变量最终可降到三个维度,即RFM模型 模型通过一个客户的近期购买行为.购买的总体频率以及花了多少钱…
为啥我做的RFM模型被人说做错了,我错哪了?
本文转自知乎 作者:接地气的陈老师 ————————————————————————————————————————————————————— 有同学问:“为啥我做的RFM模型被客户/业务部门批斗,说做的是啥XX玩意?我是对着网上的教程做的呀” 答:冒着被众多卖网课的号喷死的风险,揭示一个真相,就是在网课里如果不加“模型”俩字是很难卖的动的.大家都喜欢看高大上的东西,所以一般教数据分析的课在描述性统计完了都直接上RFM. 如果说成:“你要对用户交易行为进行分段,解读业务含义”,就太搓矮土了,咋吸…
RFM模型的应用 - 电商客户细分(转)
RFM模型是网点衡量当前用户价值和客户潜在价值的重要工具和手段.RFM是Rencency(最近一次消费),Frequency(消费频率).Monetary(消费金额) 消费指的是客户在店铺消费最近一次和上一次的时间间隔,理论上R值越小的客户是价值越高的客户,即对店铺的回购几次最有可能产生回应.目前网购便利,顾客已经有了更多的购买选择和更低的购买成本,去除地域的限制因素,客户非常容易流失,因此CRM操盘手想要提高回购率和留存率,需要时刻警惕R值. 消费频率是客户在固定时间内的购买次数(一般是1年)…