今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层中每个参数的偏导数,BP算法正是用来求解网络中参数的偏导数问题的. 先上一张吊炸天的图,可以看到BP的工作原理: 下面来看BP算法,用m个训练样本集合来train一个神经网络,对于该模型,首先需要定义一个代价函数,常见的代价函数有以下几种: 1)0-1损失函数:(0-1 loss function)…
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层中每个参数的偏导数,BP算法正是用来求解网络中参数的偏导数问题的. 先上一张吊炸天的图,可以看到BP的工作原理: 下面来看BP算法,用m个训练样本集合来train一个神经网络,对于该模型,首先需要定义一个代价函数,常见的代价函数有以下几种: 1)0-1损失函数:(0-1 loss function)…
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示例,假设有100维度,即特征数目是100,若使用logistic来做分类,对于这种线性不可分的情形,要对特征进行各种形式的组合映射,然后用映射后扩充的特征进行分类,可能会增加大量的参数,计算复杂性可想而知,而且可能会造成严重的over-fitting,可见logistic分类的局限性,下面引入NN.…
BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得到的结果. 有了cost function,目标是求出一组参数W,b,这里以表示,cost function 暂且记做.假设 ,则 ,即一维情况下的Gradient Descent: 根据6.2中对单个参数单个样本的求导公式: 可以得到每个参数的偏导数,对所有样本累计求和,可以得到所有训练数据对参数…
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法步骤: 首先,加载数据集{x(1),x(2),x(3)...x(m)}该数据集为一个n*m的矩阵,然后初始化参数 θ ,为一个k*n的矩阵(不考虑截距项):       首先计算,该矩阵为k*m的: 然后计算: 该函数参数可以随意+-任意参数而保持值不变,所以为了防止 参数 过大,先减去一个常量,防…
https://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf 7.1 Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single layer of computing…
In the last chapter we saw how neural networks can learn their weights and biases using the gradient descent algorithm. There was, however, a gap in our explanation: we didn't discuss how to compute the gradient of the cost function. That's quite a g…
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法步骤: 首先,加载数据集{x(1),x(2),x(3)...x(m)}该数据集为一个n*m的矩阵,然后初始化参数 θ ,为一个k*n的矩阵(不考虑截距项):       首先计算,该矩阵为k*m的: 然后计算: 该函数参数可以随意+-任意参数而保持值不变,所以为了防止 参数 过大,先减去一个常量,防…
1. Feedforward and cost function; 2.Regularized cost function: 3.Sigmoid gradient The gradient for the sigmoid function can be computed as: where: 4.Random initialization randInitializeWeights.m function W = randInitializeWeights(L_in, L_out) %RANDIN…
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示例,假设有100维度,即特征数目是100,若使用logistic来做分类,对于这种线性不可分的情形,要对特征进行各种形式的组合映射,然后用映射后扩充的特征进行分类,可能会增加大量的参数,计算复杂性可想而知,而且可能会造成严重的over-fitting,可见logistic分类的局限性,下面引入NN.…