矩阵树定理&BEST定理学习笔记】的更多相关文章

背景 非旋转treap真的好久没有用过了... 左偏树由于之前学的时候没有写学习笔记, 学得也并不牢固. 所以打算写这么一篇学习笔记, 讲讲左偏树和非旋转treap. 左偏树 定义 左偏树(Leftist Tree)是一种可并堆(Mergeable Heap), 它除了支持优先队列的三个基本操作(插入,删除,取最小节点), 还支持一个很特殊的操作--合并操作; 左偏树是一棵堆有序(Heap Ordered)二叉树; 左偏树满足左偏性质(Leftist Property): 节点的键值小于或等于它…
如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/6420935.html http://blog.csdn.net/Marco_L_T/article/details/72888138 首先是行列式对几个性质(基本上都是用数学归纳法证): 1.交换两行(列),行列式取相反数 2.由1.得若存在两行(列)完全相同则行列式为0 3.上(下)三角行列式即主…
设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r \ (mod \ m_r)$ 有整数解.设$P = \prod\limits_{k = 1}^{r} m_k$,则有 $$x ≡ a_1 M_1 M_1^{-1} + a_2 M_2 M_2^{-1} + ... + a_r M_r M_r^{-1}\ ( \ mod \ P)$$ 其中,$M_i…
1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 14302  Solved: 5779[Submit][Status][Discuss] Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I…
blog:www.wjyyy.top     AC自动机是一种毒瘤的方便的多模式串匹配算法.基于字典树,用到了类似KMP的思维.     AC自动机与KMP不同的是,AC自动机可以同时匹配多个模式串,而复杂度不会达到太高.如果用KMP多次匹配字符串,复杂度就是\(O(k(n+m))\).     我们知道,如果让一个字符串头对头或者完全匹配其他字符串,用字典树来匹配是最为方便的.但是如果匹配过程中发现当前节点没有目标儿子,就发生了失配.在KMP字符串匹配中,失配可以跳到给当前位置预处理出的nxt…
我居然还不会LCT QAQ真是太弱了 必须学LCT QAQ ------------------线割分是我www------------ LinkCut-Tree是基于Splay(由于Splay能够非常快的支持合并和分离,当然fhqTreap也能够可是复杂度会多一个log)的一种动态维护树的权值形态的方法.基本做法是基于轻重链(注意这里的轻重链和树链剖分的轻重链定义并不一样)将树分成若干Splay森林,然后对这个Splay森林进行各种鬼畜的操作. 由Sleator和Tarjan发明,操作和查询的…
树链剖分 顾名思义,就是把一课时分成若干条链,使得它可以用数据结构(例如线段树)来维护 一些定义: 重儿子:子树最大的儿子 轻儿子:除了重儿子以外的儿子 重边:父节点与重儿子组成的边 轻边:除重边以外的边 重链:重边连接而成的链 轻链:轻边连接而成的链 链头:一条链上深度最小的点 第一步:进行进行轻重边的划分. 定义size[x]为以x为根的子树节点个数,令v为u儿子中size值最大的节点,那么(u,v)就是重边,其它出边都是轻边 两个重要性质: 1.轻边(u,v)中,Size[v]<size[…
二叉排序树能够支持多种动态集合操作,它可以被用来表示有序集合,建立索引或优先队列等.因此,在信息学竞赛中,二叉排序树应用非常广泛. 作用于二叉排序树上的基本操作,其时间复杂度均与树的高度成正比,对于一棵有 \(n\) 个节点的二叉树,这些操作在最有情况下运行时间为 \(O( \log_2 n)\). 但是,如果二叉树退化成了一条 \(n\) 个节点组成的线性链表,则这些操作在最坏情况下的运行时间为 \(O(n)\). 有些二叉排序树的变形,其基本操作的性能在最坏情况下依然很好,如平衡树(AVL)…
Numpy库 numpy:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成,并可与C++/Fortran语言无缝结合.树莓派Python v3默认安装已经包含了numpy. ①    导入模块 >>> import numpy as np ②    生成数组 >>> np.array([1, 2, 3, 4, 5])        # 把列表转换为数组 array([1, 2, 3, 4, 5]) >>…
终于学到这个了,本来准备省选前学来着的? 前置知识:矩阵行列式 矩阵树定理 矩阵树定理说的大概就是这样一件事:对于一张无向图 \(G\),我们记 \(D\) 为其度数矩阵,满足 \(D_{i,i}=\text{点}i\text{的度数}\),\(D_{i,j}=0(i\ne j)\),再记 \(A\) 为其邻接矩阵,满足 \(A_{i,j}=i,j\text{之间边的条数}\),如果有重边则算作多条边. 设 \(K=D-A\),那么去掉 \(K\) 第 \(k\) 行第 \(k\) 列(\(k\…