计算幂 51Nod 1046 A^B Mod C】的更多相关文章

给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) Output 输出计算结果 Input示例 3 5 8 Output示例 3 #include <iostream> #include <stdio.h> using namespace std; long long a,b,c; long long mod(long long…
1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) Output 输出计算结果 Input示例 3 5 8 Output示例 3 题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!prob…
给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) Output 输出计算结果 Input示例 3 5 8 Output示例 3解:思路一:暴力求解.思路二:通过公式(a * b) mod c = ((a mod c)*(b mod c)) mod c 简化求解.思路三:快速幂.简单的说,快速幂就是将指数转化为二进制的形式并差分开相乘(理解的关键在于明白…
给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) Output 输出计算结果 Input示例 3 5 8 Output示例 3 代码 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define ll l…
给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) Output 输出计算结果 Input示例 3 5 8 Output示例 3 用到了快速幂 ,挑战P123 比如x ^22 = x ^16 *x ^4*x ^2; 22 转换成二进制是10110: #include <iostream> using namespace std; typedef…
1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) Output 输出计算结果 Input示例 3 5 8 Output示例 3 -------------- 快速幂 */ import java.util.Scanner; public class Main1 { stati…
1046 A^B Mod C   给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. 收起   输入 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) 输出 输出计算结果 输入样例 3 5 8 输出样例 3 分治法,注意要用long long,防止数字溢出C++代码: #include<iostream> #include<cstdio> using namespace std; int pow…
1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) Output 输出计算结果 Input示例 3 5 8 Output示例 3 #include<cstdio> #include<iostream> #de…
用Python计算幂的两种方法: #coding:utf-8 #计算幂的两种方法.py #1.常规方法利用函数 #不使用递归计算幂的方法 """ def power(x,n): result=1 for i in range(n): 1 2 3 result*=x #result=result*x x=2 result=1*2 result=2*2 result=4*2 print result #2,4,8 null result=1*4 result=4*4 print…
// 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b & 1) ans = (long long)ans * a % p; a = (long long)a * a % p; } return ans; } // 64位整数乘法的O(log b)算法 long long mul(long long a, long long b, long long p) {…