一.热点Key问题产生的原因 1.用户消费的数据远大于生产的数据(热卖商品.热点新闻.热点评论.明星直播). 在日常工作生活中一些突发的的事件,例如:双十一期间某些热门商品的降价促销,当这其中的某一件商品被数万次点击浏览或者购买时,会形成一个较大的需求量,这种情况下就会造成热点问题. 同理,被大量刊发.浏览的热点新闻.热点评论.明星直播等,这些典型的读多写少的场景也会产生热点问题. 2.请求分片集中,超过单 Server 的性能极限. 在服务端读数据进行访问时,往往会对数据进行分片切分,此过程中…
Redis 大 key 问题 & 问题分析 & 解决方案 Redis 什么是 Redis 大 key 单个key 存储的 value 很大 hash, set,zset,list 结构中存储过多的元素 可能存在 Redis 大 key 的业务场景 1.配送范围特别大的门店 2.促销活动特别多的门店.商家等 3.高频用户下的订单列表 ... Redis 大 key 的危害 OPS 低也会导致内存占用多.流量大; 比如一次取走100K的数据,当OPS为1000时,就会产生100M/s的流量;…
Java技术栈 www.javastack.cn 优秀的Java技术公众号 来源:http://t.cn/EAEu4to 一.热点问题产生原因 热点问题产生的原因大致有以下两种: 1.1 用户消费的数据远大于生产的数据(热卖商品.热点新闻.热点评论.明星直播). 在日常工作生活中一些突发的的事件,例如: 双十一期间某些热门商品的降价促销,当这其中的某一件商品被数万次点击浏览或者购买时,会形成一个较大的需求量,这种情况下就会造成热点问题. 同理,被大量刊发.浏览的热点新闻.热点评论.明星直播等,这…
热门新闻事件或商品通常会给系统带来巨大的流量,对存储这类信息的Redis来说却是一个巨大的挑战.以Redis Cluster为例,它会造成整体流量的不均知,个别节点出现OPS过大的情况,极端情况下热点key甚至会超过Redis本身能够承受的OPS, 因此寻找热点key对于开发和运维人员非常重要.下面就从四个方面来分析热点key. 1.客户端 客户端其实是距离key"最近"的地方,因为Redis命令就是从客户端发出的,例如在客户端设置全局字典(key和调用次数),每次调用Redis命令时…
最近面试中遇到redis缓存穿透.缓存雪崩等问题,特意了解下. redis缓存穿透: 缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有.这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空.这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题. 解决的办法: 1. 如果查询数据库也为空,直接设置一个默认值存放到缓存,后续不会继续访问数据库,同时设置过期时间保证高并发情况下保障不被穿透,后续也能及时更新. 2. 假如key是有一定规则的,可key来过…
缓存穿透 缓存系统,按照KEY去查询VALUE,当KEY对应的VALUE一定不存在的时候并对KEY并发请求量很大的时候,就会对后端造成很大的压力. (查询一个必然不存在的数据.比如文章表,查询一个不存在的id,每次都会访问DB,如果有人恶意破坏,很可能直接对DB造成影响.) 由于缓存不命中,每次都要查询持久层.从而失去缓存的意义. 解决方法: 1.缓存层缓存空值. –缓存太多空值,占用更多空间.(优化:给个空值过期时间) –存储层更新代码了,缓存层还是空值.(优化:后台设置时主动删除空值,并缓存…
缓存穿透 缓存系统,按照KEY去查询VALUE,当KEY对应的VALUE一定不存在的时候并对KEY并发请求量很大的时候,就会对后端造成很大的压力. (查询一个必然不存在的数据.比如文章表,查询一个不存在的id,每次都会访问DB,如果有人恶意破坏,很可能直接对DB造成影响.) 由于缓存不命中,每次都要查询持久层.从而失去缓存的意义. 解决方法: 1.缓存层缓存空值. –缓存太多空值,占用更多空间.(优化:给个空值过期时间) –存储层更新代码了,缓存层还是空值.(优化:后台设置时主动删除空值,并缓存…
一. 缓存雪崩 1. 含义 同一时刻,大量的缓存同时过期失效. 2. 产生原因和后果 (1). 原因:由于开发人员经验不足或失误,大量热点缓存设置了统一的过期时间. (2). 产生后果:恰逢秒杀高峰,缓存过期,瞬间海量的QPS(每秒查询次数)直接打到DB上,如果系统架构没有熔断机制,直接将导致系统全线崩溃. 3. 处理方案 (1). 设置不同的缓存失效时间,比如可以在缓存过期时间后面加个随机数,这样就避免同一时刻缓存大量过期失效. setRedis(key,value,time + Math.r…
热点问题概述 产生原因 热点问题产生的原因大致有以下两种: 用户消费的数据远大于生产的数据(热卖商品.热点新闻.热点评论.明星直播). 在日常工作生活中一些突发的的事件,例如:双十一期间某些热门商品的降价促销,当这其中的某一件商品被数万次点击浏览或者购买时,会形成一个较大的需求量,这种情况下就会造成热点问题.同理,被大量刊发.浏览的热点新闻.热点评论.明星直播等,这些典型的读多写少的场景也会产生热点问题. 请求分片集中,超过单Server的性能极限. 在服务端读数据进行访问时,往往会对数据进行分…
分布式缓存是网站服务端经常用到的一种技术,在读多写少的业务场景中,通过使用缓存可以有效地支撑高并发的访问量,对后端的数据库等数据源做到很好地保护.现在市面上有很多分布式缓存,比如Redis.Memcached以及阿里的Tair等,不管我们使用的哪种缓存产品,基本上都会遇到缓存击穿.缓存失效以及热点key的问题.如何有效地防止这些问题,也是我们在享受缓存带来的红利的同时,必须要解决的难题. 通常我们在使用缓存时都是先检查缓存中是否存在,如果存在直接返回缓存内容,如果不存在就直接查询数据库然后再缓存…