机器学习实战 Tricks】的更多相关文章

样本集的简单封装 D = (numpy.random.randn(N, d), numpy.random.randint(low=0, high=2, size=(N, ))) # D[0] ⇒ X # D[1] ⇒ y 1. One Hot Encoder 编码 One Hot Encoder 编码针对的是非数值型(numerical),而是类别型(categorical)特征: One Hot Encoder 有时会带来维度的激增,而维度的激增会使得最终的识别结果存在过拟合的风险: 一个现实…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
近期学习机器学习,找到一本不错的教材<机器学习实战>.特此做这份学习笔记,以供日后翻阅. 机器学习算法分为有监督学习和无监督学习.这本书前两部分介绍的是有监督学习,第三部分介绍的是无监督学习(也称聚类).有监督学习有两种功能,一种是分类(本书第一部分介绍),一种是回归预测(本书第二部分介绍).这样就对这本书的思路有了一个总体把握.本书涉及算法包括:k-近邻算法(KNN).决策树.朴素贝叶斯.Logistic回归.支持向量机(SVM).AdaBoost算法.k-均值聚类算法(k-means).A…
摘要:最近在看<机器学习实战>,在code的过程中总是会报一些小错误,所以发下debug过的地方:由于是跳着看的,所以只是其中一部分,希望之后能把这本书我遇见的全部错误都在此更正下. 内容: 第九章(回归树): mat0 = dataSet[nonzero(dataSet[:,feature] >value)[0], :][0] mat1 = dataSet[nonzero(dataSet[:,feature]<=value)[0], :][0] 改为: mat0 = dataSe…