一.摘要: 主要是做一个基于协作(深度)度量学习(CML)的系统来预测新剧场版本的购买概率.即测量产品的空间距离来预测购买概率. 二.模型 该图分为两部分,先计算右边,右边通过深度度量学习(DDML)来计算产品距离,将得到的产品距离输入左边逻辑回归中得到购买概率. e(movie)是电影的词向量,f是映射函数,z是电影在特定空间的投影.通过深度学习来学习.具体去了解Deep Distance Metrix Learning. 以下公式是计算出产品距离的之后采用逻辑回归计算购买概率的公式:[上图左…
一.摘要: 文章的核心思想:是如何把Metric learning 和 CF结合起来从而达到更好的推荐效果. 提出了CML(Collaborative Metric Learning),其学习一个联合度量空间,不仅编码用户的偏好,而且编码用户-用户和项目-项目的相似性. 假设用户和物品可以放到低维空间,并且可以使用满足不等式性质的欧式距离来度量他们之间的距离. 将ML和CF结合的原因是: 传统的CF都使用了点积来衡量用户向量和项目向量的距离.即点积值越大就代表两个向量相近.但这篇文章认为点积计算…
Source: PAT A1129 Recommendation System (25 分) Description: Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's preference by the numb…
http://blog.csdn.net/pipisorry/article/details/49205589 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System {博客内容:推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM, latent factor model)推荐.这篇博客只…
Dear Prof.Choi: My research interest is mainly the application and optimization of big data and artificial intelligence technology in recommendation system. Recommendation system is a subclass of information filtering system, which presents items tha…
DML学习原文链接:http://blog.csdn.net/lzt1983/article/details/7884553 一篇metric learning(DML)的综述文章,对DML的意义.方法论和经典论文做一个介绍,同时对我的研究经历和思考做一个总结.可惜一直没有把握自己能够写好,因此拖到现在. 先列举一些DML的参考资源,以后有时间再详细谈谈. 1. Wikipedia 2. CMU的Liu Yang总结的关于DML的综述页面.对DML的经典算法进行了分类总结,其中她总结的论文非常有…
原文链接:http://blog.csdn.net/cserchen/article/details/14231153 目前互联网上所能找到的知名开源推荐系统(open source project for recommendation system),并附上了个人的一些简单点评(未必全面准确), 这方面的中文资料很少见,希望对国内的朋友了解掌握推荐系统有帮助------陈运文    SVDFeature 由上海交大的同学开发的,C++语言,代码质量很高 .去年我们参加KDD竞赛时用过,非常好用…
Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016 摘要:本文提出一种距离度量的方法,充分的发挥 training batches 的优势,by lifting the vector of pairwise distances within the batch to the matrix of pairwise distances. 刚开始看这个摘要,有点懵逼,不怕,后面会知道这段英文是啥意思的. 引言部分…
MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching CVPR  2015 本来都写到一半了,突然笔记本死机了,泪崩!好吧,重新写!本文提出了一种联合的学习patch表示的一个深度网络 和 鲁棒的特征比较的网络结构.与传统的像SIFT特征点利用欧氏距离进行距离计算的方式不同,本文是利用全连接层,通过学习到的距离度量来表示两个描述符的相似性. 本文的贡献点如下: 1. 提出了一个新的利用深度网络架构基于pat…
1129. Recommendation System (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system tha…
Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's preference by the number of times that an item has been accessed by this user. Inp…
Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's preference by the number of times that an item has been accessed by this user. Inp…
配置和运行 MatchNet CVPR 2015 GitHub: https://github.com/hanxf/matchnet 最近一个同学在配置,测试这个网络,但是总是遇到各种问题. 我也尝试了一下,结果也是一堆问题. 这里记录一下. 问题1.  ImportError: No module named leveldb wangxiao@AHU:~/Downloads/matchnet-master$ ./run_gen_data.sh Traceback (most recent ca…
Deep Reinforcement Learning Based Trading Application at JP Morgan Chase https://medium.com/@ranko.mosic/reinforcement-learning-based-trading-application-at-jp-morgan-chase-f829b8ec54f2 FT released a story today about the new application that will op…
1129 Recommendation System (25 分) Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's preference by the number of times that an item h…
1129. Recommendation System (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system tha…
1129 Recommendation System(25 分) Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's preference by the number of times that an item ha…
https://pintia.cn/problem-sets/994805342720868352/problems/994805348471259136 Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's pref…
Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's preference by the number of times that an item has been accessed by this user. Inp…
Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's preference by the number of times that an item has been accessed by this user. Inp…
摘自:https://blog.csdn.net/me_yundou/article/details/80459341 具体看上面链接 一.摘要: 这篇文章主要介绍的是作者识别(author identification)问题.作者识别问题是指基于某个T时间之前的所有论文(paper)和它们的作者(author),以及所属机构(organization),或者发表会议(venue)这些已知的历史数据之间的关系,构建一个模型(learning model),然后对T时间之后发表的匿名的论文(ano…
Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's preference by the number of times that an item has been accessed by this user. Inp…
Recommendation system predicts the preference that a user would give to an item. Now you are asked to program a very simple recommendation system that rates the user's preference by the number of times that an item has been accessed by this user. Inp…
由于在读文献期间多次遇见KISSME,都引自这篇CVPR,所以详细学习一下. Introduction 度量学习在机器学习领域有很大作用,其中一类是马氏度量学习(Mahalanobis metric learning). 什么是马氏距离?参考该篇文章[传送门] KISS含义为:keep it simple and straightforward Learning a Mahalanobis Metric 对于两个数据点 xi.xj,基于马氏距离的相似度为: 如果两个数据属于同一类,记为 yij…
注意:论文中,很多的地方出现baseline,可以理解为参照物的意思,但是在论文中,我们还是直接将它称之为基线,也 就是对照物,参照物. 这片论文中,作者没有去做实际的实验,但是却做了一件很有意义的事,他收罗了近些年所有推荐系统中涉及到深度学习的文章 ,并将这些文章进行分类,逐一分析,然后最后给出了一个推荐系统以后的发展方向的预估. 那么通过这篇论文,我们可以较为 系统的掌握这些年,在推荐系统方面,深度学习都有那些好玩的应用,有哪些新奇的方法,下面是论文的一个粗糙翻译: 概述:   随着互联网上…
摘要: 大数据催生了互联网,电子商务,也导致了信息过载.信息过载的问题可以由推荐系统来解决.推荐系统可以提供选择新产品(电影,音乐等)的建议.这篇论文介绍了一个音乐推荐系统,它会根据用户的历史行为和口味向用户推荐歌曲.本文介绍一种基于用户和物品的协同过滤技术.首先,建立一个用户-物品相关矩阵来形成用户集群和物品集群.然后,使用这些集群找出和目标用户最相似的用户集群和物品集群.最后,系统会根据最相似的用户和物品集群来推荐音乐.该算法将在基准数据集Last.fm上进行实施.实验结果显示该算法的表现要…
一.摘要: 本文模型 LRML(潜在相关度量学习)是一种新的度量学习方法的推荐.[旨在学习用户和项目之间的相关关系,而不是简单的用户和项目之间的push和pull关系,push和pull主要针对LMNN算法] 为了做到这一点,本文采用了一个增强的存储器模块,并通过这些记忆块来构建用户和项目潜在的关系. 二.引言: (1)MF的总体思想如下:用户和项目被表示为一个矩阵,然后被分解为潜在的组件,这些组件也可以被解释为使用内部产品来建模用户和项目之间的关系.但其内积违反了三角不等式,故CML被提出.…
1.题目:一种新的基于深度学习的协同过滤推荐系统 2.摘要: 以协同过滤(CF)为基础的模型主要获取用户和项目的交互或者相关性.然而,现有的基于CF的方法只能掌握单一类型的关系,如RBM,它只能获取用户-用户或项目-项目关系的相关性,而矩阵分解(MF)可以捕捉到用户-项目之间的相互作用. 为了克服基于CF方法的这些困难,我们提出了一种新的深层学习方法,主要分为两个阶段:①获取用户以及项目的预先表示②神经网络预测. 在初始阶段,对应的低维向量的用户和项目单独学习,获得用户–用户和项目–项目相关的语…
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web…
前言 随着电子商务的发展,网络购物成为一种趋势,当你打开某个购物网站比如淘宝.京东的时候,会看到很多给你推荐的产品,你是否觉得这些推荐的产品都是你似曾相识或者正好需要的呢.这个就是现在电子商务里面的推荐系统,向客户提供商品建议和信息,模拟销售人员完成导购的过程. 介绍 推荐系统简介 什么是推荐系统呢?维基百科这样解释道:推荐系统属于资讯过滤的一种应用.推荐系统能够将可能受喜好的资讯或实物(例如:电影.电视节目.音乐.书籍.新闻.图片.网页)推荐给使用者. 推荐系统首先收集用户的历史行为数据,然后…