1062 ModricWang的撒币游戏 思路 此题为2017年ACM-ICPC亚洲区域赛乌鲁木齐赛区的A题,现场94个队中有38个队做出此题.在这里作为满分以外的题,是为了让大家看一下外面一些题的风格,不要被三位助教的出题风格所局限. 此题首先需要知道一些高中数学概率论的知识.扔起N个硬币,如果每个硬币下落时,正反面朝上的概率都是确定的,那么这些硬币中正面朝上的数量是呈二项分布的. 考虑使用DP,\(prob[i][j]\) 表示扔了第i次后,有j个硬币正面朝上的概率.首先根据题设,\(pro…
1066 ModricWang的水系法术 思路 比较典型的最大流问题,需要注意的是,题目已经暗示(明示)了这里的边是双向的,在建图的时候需要加上反向边的容量值. 解决最大流问题的基本思路就是不断在残量网络上找增广路径,这里可以参考一下我院远古学长Song Renfei对于ISAP算法的讲解:ISAP 时间复杂度\(O(V^2 \sqrt E)\) 代码 #include <iostream> #include <cstring> using std::ios_base; using…
1116 ModricWang likes geometry 思路 难题,非常考察几何知识,放在这里作为计算几何场次的最难的题. 原题地址 原版题解 代码…
1021 ModricWang的序列问题II 思路 此题与上一题区别不是很大,只是增加了一个长度限制,当场通过的人数就少了很多. 大体解题过程与上一题相同.区别在于对\(f[]\) 的操作.没有长度限制的时候,\(f[]\) 的更新策略是立即更新.假设间隔为\(T\),现在由于需要考虑间隔,那么在处理第\(i\) 个元素的时候,就需要看到 前\(i -T\) 个元素生成的\(f[]\) ,而不能受到第\(i-T+1\) 到 \(i-1\) 个元素的干扰.因此,考虑如下操作:每次准备更新\(f[]…
1039 AlvinZH的学霸养成记IV 思路 难题,最大二分图匹配. 难点在于如何转化问题,n对n,一个只能攻击一个,判断是否存在一种攻击方案我方不死团灭对方.可以想到把所有随从看作点,对于可攻击的两个随从间连上边,这样就把问题转化为图了. 需要注意的是属性值的转化:免疫可看做生命值无限,剧毒可看做攻击力无限.(需要一点小小的机智) 图建好了,接下来怎么办呢?假设存在一种方案满足题意,那就是每个我方随从都可以找到敌方随从攻击,由于要团灭,只能存在一对一的情况,不存在多对一或一对多.如何表达这个…
1064 Bamboo和"Coco" 分析题意 每个亡灵至少一个花瓣,相邻的亡灵中思念值高的要获得的花瓣高(思念值相等是不需要花瓣一样多的).主要考贪心思路,为了使得花瓣总量最少,每次比思念值更低的"邻近亡灵"的花瓣数多一就可以了 思路 都是先保证每个亡灵至少一个花瓣 思路一 直接模拟思路,同时关心左边和右边(或者说前边和后边),一次循环是不够的,比如3 2 1,修改了1号的花瓣数,再修改2号的花瓣数,此时会对一号产生影响.需要多次遍历,直到没有新的改变为止,算法为…
Bamboo&APTX4844魔发药水 题意 "于是,Bamboo耐着性子,看巫师从袖子里掏出 M 瓶时光泉水和 K 粒绿色能量.每瓶时光泉水重量为 c ,生发效果为 l:每粒绿色能量的重量为w ,生发效果为 r.但一瓶APTX4844的重量不能超过 S,否则很难过安检(难道不是难以下咽?)." "配置魔发药水需要用到至多两种原料:固态的绿色能量和液态的时光泉水.但是由于两者副作用不一样,*制作时优先选用副作用小的绿色能量,即先考虑使用绿色能量使得生发效果最大,然后再…
904 Winter is coming 思路 难题.首先简化问题, \(n\) 个0与 \(m\) 个1排成一列,连续的0不能超过x个,连续的1不能超过y个,求排列方法数. 显然会想到这是动态规划.最快想到的方法是 \(dp[i][j][x][y]\) 表示已经有i个北境兵j个野人参与排列,且末尾有x个连续北境士兵或y个连续野人士兵的方案数.这方法显然是正确的,但是光是 \(dp[200][200][10][10]\) 数组已经十分接近本题内存限制了,保证MLE.状态转移方法是大模拟,四层fo…
1065 Beihang Collegiate Pronunciation Contest 2017 思路 在字符串中不断做匹配 找到一个匹配就输出 时间复杂度\(O(n)\) ps.模式串是定长的,因此看做常数 代码 #include<string> #include<iostream> using namespace std; int main() { int n; cin >> n; string ch; cin >> ch; for (auto i…
850 AlvinZH的学霸养成记III 思路 难题.概率DP. 第一种思考方式:直接DP dp[i]:从已经有i个学霸到所有人变成学霸的期望. 那么答案为dp[1],需要从后往前逆推.对于某一天,有可能会增加一个学霸or不增加. ①增加:\((dp[i+1] + 1) * P\) ②不增加:\((dp[i] + 1) * (1-P)\) 其中,\(P = i * (n - i) * p / (C(n,2))\),C(n,2) = (n - 1) * n / 2.其含义是:n个人中选出一非学霸一…