概要: 各种dfs时间戳..全是tarjan(或加上他的小伙伴)无限膜拜tarjan orzzzzzzzzz 技巧及注意: 强连通分量是有向图,双连通分量是无向图. 强连通分量找环时的决策和双连通的决策十分相似,但不完全相同. 强连通分量在if(FF[v])后边的else if还要特判是否在栈里,即vis[v],然后才更新LL[u] 割点和双连通分量因为是无向图所以要判个fa,可以在dfs时维护个fa参数 割点如果要求分割的分量,那么就是这个节点对他的子树是割点的数目+1. 割点不需要栈维护但是…
Tarjan求强连通分量 在一个有向图中,如果某两点间都有互相到达的路径,那么称中两个点强联通,如果任意两点都强联通,那么称这个图为强联通图:一个有向图的极大强联通子图称为强联通分量.   算法可以在 的时间内求出一个图的所有强联通分量. 表示进入结点 的时间 表示从 所能追溯到的栈中点的最早时间 如果某个点 已经在栈中则更新  否则对 进行回溯,并在回溯后更新  #include<iostream> #include<cstdlib> #include<cstdio>…
tarjan算法是在dfs生成一颗dfs树的时候按照访问顺序的先后,为每个结点分配一个时间戳,然后再用low[u]表示结点能访问到的最小时间戳 以上的各种应用都是在此拓展而来的. 割点:如果一个图去掉某个点,使得图的连通分支数增加,那么这个点就是割点 某个点是割点,当且仅当这个点的后代没有连回自己祖先的边.即low[v] >= dfn[u]     , v是u的后代 需要注意的是根结点的特判,因为根结点没有祖先,根结点是割点,当且仅当根结点有两个以上的儿子. 问题:重边对该算法有影响吗?没有影响…
变量解释: low 指当前节点在同一强连通分量(或环)能回溯到的dfn最小的节点 dfn 指当前节点是第几个被搜到的节点(时间戳) sta 栈 vis 是否在栈中 ans 指强连通分量的数量 top 栈顶 1.求强连通分量 定义:如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通分量(strongly connected components). 算法:在有向图中从一点(u…
int dfn[N], low[N], dfncnt, s[N], tp; int scc[N], sc; // 结点 i 所在 scc 的编号 int sz[N]; // 强连通 i 的大小 void tarjan(int u) { low[u] = dfn[u] = ++dfncnt, s[++tp] = u; for(int i = h[u]; i; i = e[i].nex) { const int &v = e[i].t; if(!dfn[v]) tarjan(v), low[u] =…
// https://www.cnblogs.com/stxy-ferryman/p/7779347.html ; struct EDGE { int to, nt; }e[N*N]; int head[N], tot; void addE(int u,int v) { e[tot].to=v; e[tot].nt=head[u]; head[u]=tot++; } int dfn[N], low[N], ind; int col[N], id; bool vis[N]; stack <int>…
题目链接:http://poj.org/problem?id=1144 题目大意:给以一个无向图,求割点数量. 这道题目的输入和我们一般见到的不太一样. 它首先输入 \(N\)(\(\lt 100\))表示点的数量(\(N=0\)表示文件输入结束). 然后接下来每行输入一组数字. 如果这一组数字只包含一个 \(0\) ,说明本组测试数据输入结束: 否则,假设这些数可以拆分成 \(a_1,a_2,a_3, \cdots ,a_m\),则说明 \(a_1\) 这个点到 \(a_2,a_3, \cdo…
割点与桥 题目描述 给定一张无向图G(V,E),你需要找出所有的割点与桥. 输入 第一行给出两个正整数V,E. 接下来E行每行两个正整数x,y,表示有一条连接x,y的边. 输出 输出共2行,第一行输出所有割点的编号,第二行输出所有桥的编号. 样例输入 7 8 1 2 1 3 1 7 2 3 3 4 3 5 4 5 5 6 样例输出 1 3 5 3 8 提示 割点与桥的定义: 割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图.…
先来%一下Robert Tarjan前辈 %%%%%%%%%%%%%%%%%% 然后是热情感谢下列并不止这些大佬的博客: 图连通性(一):Tarjan算法求解有向图强连通分量 图连通性(二):Tarjan算法求解割点/桥/双连通分量/LCA 初探tarjan算法(求强连通分量) 关于Tarjan算法求点双连通分量 图的割点.桥与双连通分支 感谢有各位大佬的博客帮助我理解和学习,接下来就是进入正题. 关于tarjan,之前我写过一个是求lca的随笔,而找lca只是它一个小小的功能,它还有很多其他功…
一.dfs框架: vector<int>G[maxn]; //存图 int vis[maxn]; //节点访问标记 void dfs(int u) { vis[u] = ; PREVISIT(u); //访问节点u之前的操作 int d = G[u].size(); ; i < d; i++)//枚举每条边 { int v = G[u][i]; if(!vis[v])dfs(v); } POSTVISIT(u); //访问节点u之后的操作 } 二.无向图连通分量 void find_cc…