降维算法-PCA主成分分析】的更多相关文章

1.PCA算法介绍主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理.一般我们获取的原始数据维度都很高,比如1000个特征,在这1000个特征中可能包含了很多无用的信息或者噪声,真正有用的特征才100个,那么我们可以运用PCA算法将1000个特征降到100个特征.这样不仅可以去除无用的噪声,还能减少很大的计算量. PCA算法是如何实现的? 简单来说,就是将数据从原始的空间中转换到新的特征空间中,例如原始的空间是三维的(x,y,…
PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优化目标 降维实例 代码实现 """ 这里假设原始数据集为矩阵 dataMat,其中每一行代表一个样本,每一列代表同一个特征(与上面的介绍稍有不同,上 面是每一列代表一个样本,每一行代表同一个特征). """ import numpy as np ##…
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或者有一些特征带有的信息和其他一些特征是重复的(比如一些特征可能会线性相关).我们希望能够找出一种办法来帮助我们衡量特征上所带的信息量,让我们在降维的过程中,能够即减少特征的数量,又保留大部分有效信息——将那些带有重复信息的特征合并,并删除那些带无效信息的特征等等——逐渐创造出能够代表原特征矩阵大部分…
几个概念 正交矩阵 在矩阵论中,正交矩阵(orthogonal matrix)是一个方块矩阵,其元素为实数,而且行向量与列向量皆为正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵:  其中,为单位矩阵.正交矩阵的行列式值必定为或,因为: 对角矩阵 对角矩阵(英语:diagonal matrix)是一个主对角线之外的元素皆为0的矩阵.对角线上的元素可以为0或其他值.因此n行n列的矩阵 = (di,j)若符合以下的性质: 则矩阵为对角矩阵. 性质有: 1. 对角矩阵的和差运算结果还为对角矩阵 2. 对…
概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提到了,特征选择的目的是通过降维来降低算法的计算成本……这些语言都很正常地被我用来使用,直到有一天,一个小伙伴问了我,”维度“到底是什么? 对于数组和Series来说,维度就是功能shape返回的结果,shape中返回了几个数字,就是几维.索引以外的数据,不分行列的叫一维(此时shape返回唯一的维度…
        PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结构的技术.PCA通常用于高维数据集的探索与可视化.还可以用于数据压缩,数据预处理等.PCA可以把可能具有相关性的高维变量合成线性无关的低维变量,称为主成分( principal components).新的低维数据集会尽可能的保留原始数据的变量.PCA将数据投射到一个低维子空间实现降维.例如,二维数…
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,PCA和SVD涉及了大量的矩阵计算,两者都是运算量很大的模型,但其实,SVD有一种惊人的数学性质,即是它可以跳过数学神秘的宇宙,不计算协方差矩阵,直接找出一个新特征向量组成的n维空间,而这个n维空间就是奇异值分解后的右矩阵(所以一开始在讲解降维过程时,我们说”生成新特征向量组成的空间V",并非巧合,而…
PCA是一种非监督学习算法,它能够在保留大多数有用信息的情况下,有效降低数据纬度. 它主要应用在以下三个方面: 1. 提升算法速度 2. 压缩数据,减小内存.硬盘空间的消耗 3. 图示化数据,将高纬数据映射到2维或3维 总而言之,PCA干的事情就是完成一个将原始的n维数据转化到k维的映射.其中,k<n 它的核心算法如下: 1. 将数据均一化 x' = [x-mean(x)] / range(x) 2. 计算它的协方差矩阵 即:Sigma = 1/m * x' * x 3. 进行svd分解,计算特…
1.从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1                                                                             图2 如上图1所示,向量OA的坐标表示为(3,2),A点的横坐标实为向量OA与单位向量(1,0)的内积得到的(也就是向量OA在单位向量(1,0)所表示的的方向上的投影的长度,正负由向量OA与投影方向的夹角决定),纵坐标同理可得.而降维的过程从几何的角度去理解,实质就可…
PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier as RFC from sklearn.model_selection import cross_val_score import matplotlib.pyplot as plt import pandas as pd import numpy as np 2.…