之前一直以为卷积是二维的操作,而到今天才发现卷积其实是在volume上的卷积.比如输入的数据是channels*height*width(3*10*10),我们定义一个核函数大小为3*3,则输出是8*8.实际核函数的参数量是3*3*channels,在本例子中就是3*3*3. 举例: 假设输入的tensor是3*10*10,定义一个大小为3*3的kernel,如果进行一个conv2d操作,输出的feature map是5的话,那么这个conv2d涉及的参数数是3*3*3*5+5=140个,输出大…