原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是将深度学习deeplearning与强化学习reinforcementlearning相结合,实现了从感知到动作的端到端的革命性算法.使用DQN玩游戏的话简直6的飞起,其中fladdy bird这个游戏就已经被DQN玩坏了.当我们的Q-table他过于庞大无法建立的话,使用DQN是一种很好的选择 1.算法思想 DQN与Qlean…
1. 什么是强化学习 其他许多机器学习算法中学习器都是学得怎样做,而强化学习(Reinforcement Learning, RL)是在尝试的过程中学习到在特定的情境下选择哪种行动可以得到最大的回报.在很多场景中,当前的行动不仅会影响当前的rewards,还会影响之后的状态和一系列的rewards.RL最重要的3个特定在于: 基本是以一种闭环的形式: 不会直接指示选择哪种行动(actions): 一系列的actions和奖励信号(reward signals)都会影响之后较长的时间. 强化学习(…
kmeans算法的原理参考:http://www.cnblogs.com/mikewolf2002/p/3368118.html 下面学习一下opencv中kmeans函数的使用.      首先我们通过OpenCV中的随机数产生器RNG,生成一些均匀分布的随机点,这些点的位置对应一副图像中的像素位置,然后使用kmeans算法对这些随机点进行分类,并计算出分类簇的中心点.      随机产生的簇的数量是2到5之间的值,采样点的数量范围是1-1000,一维矩阵centers存放kmeans算法结束…
Q-Learning和Sarsa一样是基于时序差分的控制算法,那两者有什么区别呢? 这里已经必须引入新的概念 时序差分控制算法的分类:在线和离线 在线控制算法:一直使用一个策略选择动作和更新价值函数,如Sarsa 离线控制算法:两个策略,一个选择新的动作,一个更新价值函数,如Q-Learning Q-Learning简介 在S下基于ε-贪心策略选择动作A,执行A,获得奖励R,并进入下一个状态S’, 接下来如果是Sarsa,将继续基于ε-贪心策略选择动作A’,利用Q(S',A')更新价值函数,并在…
PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html     对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = p*q维的向量空间,比如100*100的灰度图像,它的向量空间为100*100=10000.下图是一个3*3的灰度图和表示它的向量表示: 该向量为行向量,共9维,用变量表示就是[v0, v1, v2, v3, v4, v5, v6, v7, v8],其中v0...v8,的范围都是0-255.    …
强化学习(Reinforcement Learning)简介 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为. 它主要包含四个元素,环境状态,行动,策略,奖励, 强化学习的目标就是获得最多的累计奖励.RL考虑的是智能体(Agent)与环境(Environment)的交互问题,其中的agent可以理解为学习的主体,它一般是咱们设计的强…
目录: 1. 引言 专栏知识结构 从AlphaGo看深度强化学习 2. 强化学习基础知识 强化学习问题 马尔科夫决策过程 最优价值函数和贝尔曼方程 3. 有模型的强化学习方法 价值迭代 策略迭代 4. 无模型的强化学习方法 蒙特卡洛方法 时序差分学习 值函数近似 策略搜索 5. 实战强化学习算法 Q-learning 算法 Monte Carlo Policy Gradient 算法 Actor Critic 算法 6. 深度强化学习算法 Deep Q-Networks(DQN) Deep De…
2015年,DeepMind团队在Nature杂志上发表了一篇文章名为"Human-level control through deep reinforcement learning"的论文,在这篇论文中,他们提出了DQN算法的改进版本,他们将改进的算法应用到49种不同的Atari 2600游戏中,并且其中的一半实现了超过人类玩家的性能.现在,深度强化学习已经成为了人工智能(Artificial Intelligence,简称AI)领域最前沿的研究方向,在各个应用领域也是备受推崇,如同…
[入门,来自wiki] 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为.这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论.控制论.运筹学.信息论.模拟优化方法.多主体系统学习.群体智能.统计学以及遗传算法.在运筹学和控制理论研究的语境下,强化学习被称作“近似动态规划”(approximate dynamic program…
原文地址: https://yq.aliyun.com/articles/400366 本文来自AI新媒体量子位(QbitAI)     ------------------------------------------------------------------------------------------- 摘要: 本文来自AI新媒体量子位(QbitAI) 地处加拿大埃德蒙顿的阿尔伯塔大学(UAlberta)可谓是强化学习重镇,这项技术的缔造者之一萨顿(Rich Sutton)在这里…