目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训练 输入表征 Fine-tunninng 缺点 ELMo/GPT/BERT对比,其优缺点 BERT-wwm RoBERTa ERNIE(艾尼) 1.0 ERNIE 2.0 XLNet 提出背景 排列语言模型(Permutation Language Model,PLM) Two-Stream Sel…
原创作者 | 杨健 论文标题: K-BERT: Enabling Language Representation with Knowledge Graph 收录会议: AAAI 论文链接: https://ojs.aaai.org/index.php/AAAI/article/view/5681 项目地址: https://github.com/autoliuweijie/K-BERT 01 背景论述 笔者在前面的论文解读中提到过ERNIE使用基于自注意力机制来克服异构向量的融合,而KEPLER…
bert之类的预训练模型在NLP各项任务上取得的效果是显著的,但是因为bert的模型参数多,推断速度慢等原因,导致bert在工业界上的应用很难普及,针对预训练模型做模型压缩是促进其在工业界应用的关键,今天介绍三篇小型化bert模型——DistillBert, ALBERT, TINYBERT. 一,DistillBert 论文:DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter  GitHub…
预训练语言模型的前世今生 - 从Word Embedding到BERT 本篇文章共 24619 个词,一个字一个字手码的不容易,转载请标明出处:预训练语言模型的前世今生 - 从Word Embedding到BERT - 二十三岁的有德 目录 一.预训练 1.1 图像领域的预训练 1.2 预训练的思想 二.语言模型 2.1 统计语言模型 神经网络语言模型 三.词向量 3.1 独热(Onehot)编码 3.2 Word Embedding 四.Word2Vec 模型 五.自然语言处理的预训练模型 六…
一.学习NLP背景介绍:      从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等,基本了解了卷积神经网络(CNN)原理及相关常用模型,如:VGG16.MaxNet等.之后从9月份开始在华为云AI专家的带领指引下,对AI深度学习的另外一个重要领域:自然语言处理(NLP)的学习,到目前为止学习了:命名实体识别.文本分类.文本相似度分析.问答系统.人脸检测.在这一个多月对NLP的处理…
1. 引言 在介绍论文之前,我将先简单介绍一些相关背景知识.首先是语言模型(Language Model),语言模型简单来说就是一串词序列的概率分布.具体来说,语言模型的作用是为一个长度为m的文本确定一个概率分布P,表示这段文本存在的可能性.在实践中,如果文本的长度较长,P(wi | w1, w2, . . . , wi−1)的估算会非常困难.因此,研究者们提出使用一个简化模型:n元模型(n-gram model).在 n 元模型中估算条件概率时,只需要对当前词的前n个词进行计算.在n元模型中,…
自然语言处理中的语言模型预训练方法(ELMo.GPT和BERT) 最近,在自然语言处理(NLP)领域中,使用语言模型预训练方法在多项NLP任务上都获得了不错的提升,广泛受到了各界的关注.就此,我将最近看的一些相关论文进行总结,选取了几个代表性模型(包括ELMo [1],OpenAI GPT [2]和BERT [3])和大家一起学习分享. 1. 引言 在介绍论文之前,我将先简单介绍一些相关背景知识.首先是语言模型(Language Model),语言模型简单来说就是一串词序列的概率分布.具体来说,…
预训练 先在某个任务(训练集A或者B)进行预先训练,即先在这个任务(训练集A或者B)学习网络参数,然后存起来以备后用.当我们在面临第三个任务时,网络可以采取相同的结构,在较浅的几层,网络参数可以直接加载训练集A或者B训练好的参数,其他高层仍然随机初始化.底层参数有两种方式:frozen,即预训练的参数固定不变,fine-tuning,即根据现在的任务调整预训练的参数. 优势: 1.当前任务数据量少,难以训练更多的网络参数,可以加载预训练的模型,然后根据当前的任务对参数进行fine-tuning,…
这是一篇还在双盲审的论文,不过看了之后感觉作者真的是很有创新能力,ELECTRA可以看作是开辟了一条新的预训练的道路,模型不但提高了计算效率,加快模型的收敛速度,而且在参数很小也表现的非常好. 论文:ELECTRA: PRE-TRAINING TEXT ENCODERS AS DISCRIMINATORS RATHER THAN GENERATORS ELECTRA全称为Efficiently Learning an Encoder that Classifies Token Replaceme…
本篇带来XL-Net和它的基础结构Transformer-XL.在讲解XL-Net之前需要先了解Transformer-XL,Transformer-XL不属于预训练模型范畴,而是Transformer的扩展版,旨在解决Transformer的捕获长距离依赖信息的上限问题.接下来我们详细的介绍Transformer-XL和XL-Net. 一,Transformer-XL 论文:TRANSFORMER-XL: LANGUAGE MODELING WITH LONGER-TERM DEPENDENC…