LeetCode.509——斐波那契数】的更多相关文章

509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 给定 N,计算 F(N). 示例 1: 输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1. 示例 2: 输入:3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 =…
问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 给定 N,计算 F(N). 示例 : 输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1. 问题分析: 由于计算任何一个第n(n >= 2)项的数都需要知道其前面两个数,即需要知道n-1和n-2是…
问题描述 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 给定 N,计算 F(N). 示例 1: 输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1. 示例 2: 输入:3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2.…
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 给定 N,计算 F(N). 示例 1: 输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1. 示例 2: 输入:3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2. 示例 3: 输…
题目 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 给定 N,计算 F(N). 示例 1: 输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1. 示例 2: 输入:3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2. 示例…
递归方法: 时间O(2^n),空间O(logn) class Solution { public: int fib(int N) { ?N:fib(N-)+fib(N-); } }; 递归+记忆化搜索: 时间O(n),空间O(logn) class Solution { public: vector<,}; int fib(int N) { ) return N; if(N>=dp.size()){ )+fib(N-); dp.push_back(x); } return dp[N]; } }…
LeetCode-cn_509 509.斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 给定 N,计算 F(N). 示例 1: 输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1. 示例 2: 输入:3 输出:2 解释:F(3) = F(2)…
问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 给定 N,计算 F(N). 示例 1: 输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1. 示例 2: 输入:3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2. 示…
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0and 1. That is, F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - 2), for N > 1. Given …
大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵快速幂,输出等了几秒钟才输出完,肯定会超时.因为所有计算都是要取模的,设F[i]=f[i] mod n.F[0]=F[1]=1.只要出现F[i]=F[i+1]=1,那么整个序列就会重复.例如n=3,则序列为1,1,2,0,2,2,1,0,1,1……第九项和第十项都等于1,所以之后的序列都会重复. 至…