numpy数组-标准化数据】的更多相关文章

标准化数据的公式: (数据值 - 平均数) / 标准差 import numpy as np employment = np.array([ 55.70000076, 51.40000153, 50.5 , 75.69999695, 58.40000153, 40.09999847, 61.5 , 57.09999847, 60.90000153, 66.59999847, 60.40000153, 68.09999847, 66.90000153, 53.40000153, 48.599998…
很多时候,我们将数据存在txt或者csv格式的文件里,最后再用python读取出来,存到数组或者列表里,再做相应计算.本文首先介绍写入txt的方法,再根据不同的需求(存为数组还是list),介绍从txt读取浮点数的方法. 一.写入浮点数到txt文件: 假设每次有两个浮点数需要写入txt文件,这里提供用with关键字打开文件的方法,使用with打开文件是一个很好的习惯,因为with结束,它就会自动close file,不用手动再去flie.close(). with open('file_path…
NumPy - 来自现有数据的数组 这一章中,我们会讨论如何从现有数据创建数组. numpy.asarray 此函数类似于numpy.array,除了它有较少的参数. 这个例程对于将 Python 序列转换为ndarray非常有用. numpy.asarray(a, dtype = None, order = None) 构造器接受下列参数: 序号 参数及描述 1. a 任意形式的输入参数,比如列表.列表的元组.元组.元组的元组.元组的列表 2. dtype 通常,输入数据的类型会应用到返回的n…
前几篇博文我写了数组创建和数据运算,现在我们就来看一下数组对象的操作方法.使用索引和切片的方法选择元素,还有如何数组的迭代方法. 一.索引机制 1.一维数组 In [1]: a = np.arange(10,16) In [2]: a Out[2]: array([10, 11, 12, 13, 14, 15]) #使用正数作为索引 In [3]: a[3] Out[3]: 13 #还可以使用负数作为索引 In [4]: a[-4] Out[4]: 12 #方括号中传入多数索引值,可同时选择多个…
操作 numpy 数组的常用函数 where 使用 where 函数能将索引掩码转换成索引位置: indices = where(mask) indices => (array([11, 12, 13, 14]),) x[indices] # this indexing is equivalent to the fancy indexing x[mask] => array([ 5.5, 6. , 6.5, 7. ]) diag 使用 diag 函数能够提取出数组的对角线: diag(A) =…
系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 Numpy 数组:ndarrayNumPy 数组属性1.ndarray.shape2.ndarray.ndim3.ndarray.flags4.ndarray.realNumPy 中的常数NumPy 创建数组1.numpy.empty2.numpy.zeros3.numpy.ones4.numpy.fullNumPy…
1.创建NumPy数组 import numpy as np # 创建3*2*4的三维数组 a = np.arange(24).reshape(3, 2, 4) # 打印三维数组的所有元素 print('a数组:\n', a) # 打印三维数组的维度 print('a数组维度:\n',a.shape) # 创建3*5的随机数组 b = np.random.randint(1, 10, size=[3,5]) print('b数组:\n', b) 输出结果: a数组: [[[ 0 1 2 3] […
numpy 数组对象NumPy中的ndarray是一个多维数组对象,该对象由两部分组成:实际的数据,描述这些数据的元数据# eg_v1 import numpy as np a = np.arange(5) # 创建一个包含5个元素的NumPy数组a,取值分别为0~4的整数 print (a) # [0 1 2 3 4] print (a.dtype) # dtype 查看数组的数据类型 # int32 (数组a的数据类型为int32) # 确定数组的维度(数组的shape属性返回一个元组(tu…
numpy的mean(),std()等方法是作用于整个numpy数组的,如果是二维数组的话,也是整个数组,包括所有行和列,但我们经常需要它仅作用于行或者列,而不是整个二维数组,这个时候,可以定义轴axis: axis=表示作用于列 axis=表示作用于行 以sum()求和方法为例: import numpy as np a = np.array([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) print a.sum() print a.sum(axis=0)# 表示对各…
python创建二维 list 的方法是在 list 里存放 list : l = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]] numpy可以直接创建一个二维的数组: import numpy as np l = np.array([ [1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14,15,16] ]) numpy二维数组获取某个值: [a, b] :  a 表示行索引, b 表示列索引,就是获取第 a 行…