http://3g.163.com/all/article/DM995J240511AQHO.html 选自the Gradient 作者:Sebastian Ruder 机器之心编译 计算机视觉领域常使用在 ImageNet 上预训练的模型,它们可以进一步用于目标检测.语义分割等不同的 CV 任务.而在自然语言处理领域中,我们通常只会使用预训练词嵌入向量编码词汇间的关系,因此也就没有一个能用于整体模型的预训练方法.Sebastian Ruder 表示语言模型有作为整体预训练模型的潜质,它能由浅…
参考 1. Word Representation 之前介绍用词汇表表示单词,使用one-hot 向量表示词,缺点:它使每个词孤立起来,使得算法对相关词的泛化能力不强. 从上图可以看出相似的单词分布距离较近,从而也证明了Word Embeddings能有效表征单词的关键特征. 2. 词嵌入(word embedding) Transfer learning and word embedding: 从海量词汇库中学习word embeddings(即所有单词的特征向量),或者从网上下载预训练好的w…
摘要:今天带领大家学习自然语言处理中的词嵌入的内容. 本文分享自华为云社区<[MindSpore易点通]深度学习系列-词嵌入>,作者:Skytier. 1 特征表示 在自然语言处理中,有一个很关键的概念是词嵌入,这是语言表示的一种方式,可以让算法自动的理解一些同类别的词,比如苹果.橘子,比如袜子.手套. one-hot向量 比如我们通常会说:"I want a glass of orange juice."但如果算法并不知道apple和orange的类似性(这两个one-h…
1.使用词嵌入 给了一个命名实体识别的例子,如果两句分别是“orange farmer”和“apple farmer”,由于两种都是比较常见的,那么可以判断主语为人名. 但是如果是榴莲种植员可能就无法判断了,因为比较不常见. 此时使用 词嵌入,是一个训练好的模型,能够表示说,oragne和durian是类似的词,farmer和cultivator是同义词. 词向量需要在大量数据上进行训练,此时又谈到了迁移学习. 首先从大的语料库中学习词嵌入,然后将模型运用到小的数据集上,或许还可以从小数据集上更…
词嵌入 @ 目录 词嵌入 1.理论 1.1 为什么使用词嵌入? 1.2 词嵌入的类比推理 1.3 学习词嵌入 1.4 Word2Vec & Skip-Gram(跳字模型) 1.5 分级&负采样 1.5.1 分级 1.5.2 负采样 1.6 Glove词向量 2.实验 2.1 实验步骤 1.理论 1.1 为什么使用词嵌入? one-hot向量(长度为词库大小,去重排序,一个one-hot仅在单词序号处取1,其余均为0)可以表示词,但是各个单词的one-hot乘积均为0,也就是看不出关联. 所…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 13. 深度学习与自然语言处理 13.1 传统方法的局限 前面已经讲过了隐马尔可夫模型.感知机.条件随机场.朴素贝叶斯模型.支持向量机等传统机器学习模型,同时,为了将这些机器学习模型应用于 NLP,我们掌握了特征模板.TF-IDF.词袋向量等特征提取方法.而这些方法的局限性表现为如下: 数据稀疏 首先,传统的机器学习方法不善于处理数据稀疏问题,这在自然语言处理领域显得尤为突出,语…
词嵌入向量WordEmbedding的原理和生成方法   WordEmbedding 词嵌入向量(WordEmbedding)是NLP里面一个重要的概念,我们可以利用WordEmbedding将一个单词转换成固定长度的向量表示,从而便于进行数学处理.本文将介绍WordEmbedding的使用方式,并讲解如何通过神经网络生成WordEmbedding. WordEmbedding的使用 使用数学模型处理文本语料的第一步就是把文本转换成数学表示,有两种方法,第一种方法可以通过one-hot矩阵表示一…
​自然语言处理(NLP)是人工智能领域一个十分重要的研究方向.NLP研究的是实现人与计算机之间用自然语言进行有效沟通的各种理论与方法. 本文整理了NLP领域常用的16个术语,希望可以帮助大家更好地理解这门学科. 1.自然语言处理(NLP) 自然语言处理,简单来说就是构建人与机器之间沟通的桥梁,以实现人机交流的目的. 自然语言处理有两大核心任务:自然语言理解(NLU)与自然语言生成(NLG). 2.Attention 机制 Attention的本质是从关注全部到关注重点.将有限的注意力集中在重点信…
在cips2016出来之前,笔者也总结过种类繁多,类似词向量的内容,自然语言处理︱简述四大类文本分析中的"词向量"(文本词特征提取)事实证明,笔者当时所写的基本跟CIPS2016一章中总结的类似,当然由于入门较晚没有CIPS2016里面说法权威,于是把CIPS2016中的内容,做一个摘录. CIPS2016 中文信息处理报告<第五章 语言表示与深度学习研究进展.现状及趋势>第三节 技术方法和研究现状中有一些关于语言表示模型划分的内容P33-P35,其中: 语言表示方法大体上…
一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同理. 但是这样的表示方法有一个缺点,看是看下图中右侧给出的例子,比如给出这么一句不完整的话: **I want a glass of orange ___** 假设通过LSTM算法学到了空白处应该填"juice".但是如果将orange改成apple,即 **I want a glass…