SPSS数据分析方法不知道如何选择】的更多相关文章

  一提到数学,高等数学,线性代数,概率论与数理统计,数值分析,空间解析几何这些数学课程,头疼呀.作为文科生,遇见这些课程时,通常都是各种寻求帮助,班上有位宅男数学很厉害,各种被女生‘围观’,这数学为什么这么难,学了有啥用呀. 有用的,当做数据分析的时候,使用到SPSS,在线SPSS分析的时候就知道用处了,在写论文的时候会用到SPSS数据分析,工作的时候也会用到SPSS数据分析.此时才知道原来数学很重要.我的数学不好肿么办?听我一 一道来. 1. 数据类型 学过数学的童鞋都知道,数学里面分了两类…
在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大.而我们的分析目的也是想查看这些对象间的差异性或相似性情况,此时由于数据的组成形式不一样,因此不能使用对应分析,而需要使用一种专门分析此问题的方法——多维尺度分析(MDS模型).多维尺度分析和对应分析类似,也是通过可视化的图形阐述结果,并且也是一种描述性.探索性数据分析方法. 基于以上,我们可以得知,多维尺度分析经常使…
  SPSS难吗?无非就是数据类型的区别后,就能理解应该用什么样的分析方法,对应着分析方法无非是找一些参考资料进行即可.甚至在线网页SPSS软件直接可以将数据分析结果指标人工智能地分析出来,这有多难呢?本文章将周老师(统计学专家)8年的数据分析经验浓缩,便于让不会数据分析的同学,在学习数据分析的过程中可以少走弯路,树立数据分析价值观,以及以数据进行决策的思维意识,并且可以快速的掌握数据分析.本文章分为四个板块进行说明,一是数据分析思维的培养.二是数据间的几类关系情况.三是数据分析方法的选择.四是…
2013-08-22 14:55:33 八大排序方法汇总(选择排序-简单选择排序.堆排序,插入排序-简单插入排序.shell排序,交换排序-冒泡排序.快速排序,归并排序,计数排序). 插入排序还可以和折半查找相结合,提高查找插入位置的速度,也就是折半插入排序,此处没有给出这种方法的相应代码. 对排序算法,可从以下几个方面评价: 时间复杂度: 空间复杂度: 稳定性. 代码(测试暂未发现问题,欢迎交流指正!): #include <iostream> #include <cassert>…
生存分析是对生存时间进行统计分析的一种技术,所谓生存时间,就是指从某一时间点起到所关心的事件发生的这段时间.这里的时间不一定就是钟表日历上的时间,也有可能是其他的度量单位,比如长度单位等. 生存时间有两个特点: 1.存在删失,是指由于某种原因导致生存时间没用被准确或完整的记录下来,这种情况很常见,如果不存在删失,那么生存分析和一般统计方法没用太大区别,但是一旦出现删失,就必须考虑其影响,一般统计方法将不再适用. 2.生存时间非负,且分布常常右偏,导致基于正态分布理论的常规统计方法不适用.用生存分…
我们在分析数据时,经常会碰到一种数据,它是由时间累积起来的,并按照时间顺序排列的一系列观测值,我们称为时间序列,它有点类似于重复测量数据,但是区别在于重复测量数据的时间点不会很多,而时间序列的时间点非常多,并且具有长期性.这种数据资料首先先后顺序不能改变,其次观测值之间不独立,因此普通的分析方法不再适用,需要专门的时间序列模型,这种时间序列分析关注的不再是变量间的关系,而是重点考察变量在时间方面的发展变化规律. 时间序列模型根据分析思想不同可以分为传统时间序列模型和现代时间序列模型 1.传统时间…
标准的线性回归模型的假设之一是因变量方差齐性,即因变量或残差的方差不随自身预测值或其他自变量的值变化而变化.但是有时候,这种情况会被违反,称为异方差性,比如因变量为储蓄额,自变量为家庭收入,显然高收入家庭由于有更多的可支配收入,因此储蓄额差异较大,而低收入家庭由于没有过多的选择余地,因此储蓄会比较有计划和规律. 异方差性如果还是使用普通最小二乘法进行估计,那么会造成以下问题 1.估计量仍然具有无偏性,但是不具备有效性2.变量的显著性检验失去意义3.由于估计量变异程度增大,导致模型预测误差增大,精…
t检验和方差分析主要针对于连续变量,秩和检验主要针对有序分类变量,而卡方检验主要针对无序分类变量(也可以用于连续变量,但需要做离散化处理),用途同样非常广泛,基于卡方统计量也衍生出来很多统计方法. 卡方统计量是基于卡方分布的一种检验方法,根据频数值来构造统计量,是一种非参数检验方法.SPSS中在交叉表和非参数检验中,都可调用卡方检验. 卡方检验的主要有两类应用 一.拟合度检验 1.检验单个无序分类变量各分类的实际观察次数和理论次数是否一致 此类问题为单变量检验,首先要明确理论次数,这个理论次数是…
统计学的假设检验可以分为参数检验和非参数检验,参数检验都是根据一些假设条件推算而来,当这些假设条件无法满足的时候,参数检验的效能会大打折扣,甚至出现错误的结果,而非参数检验通常是没有假设条件的,因此应用范围比参数检验要广. 非参数检验在不做任何假设的情况下,最大限度的使用样本信息,利用统计学.数学的方法和技巧构造统计量并加以检验,在某些情况下,非参数检验比参数检验拥有更高的效能,尽管如此,我们也不能一味的使用非参数检验,毕竟参数检验更加严谨,通常都是在数据不符合参数检验的条件是,才使用非参数检验…
我们之前讲Logistic回归模型的时候说过,分类数据在使用卡方检验的时候,当分类过多或者每个类别的水平数过多时,单元格会划分的非常细,有可能会导致大量单元格频数很小甚至为0,并且卡方检验虽然可以分析因素作用,但是无法描述作用的大小和方向,并且无法进一步考察因素间的交互作用,这些都是卡方检验的局限,实际上卡方检验更多的用于行列交叉表,也就是列联表的分析. 以上问题似乎可以使用方差分析解决,但是方差分析仅适用于连续变量,对于分类变量除了可以使用Logistic回归之外,还可以使用对数线性模型,对数…