MySQL联合索引VS单列索引】的更多相关文章

MySQL联合索引VS单列索引 以一个一千万数据量的表格为例 1. 建表建索引 USE foo; DROP TABLE IF EXISTS tmp; CREATE TABLE tmp ( id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT, school_id INT UNSIGNED NOT NULL, student_id INT UNSIGNED NOT NULL, INDEX school_id(school_id), INDEX student_id(…
我一个表 students 表,有3个字段 ,id,name,age 我要查询 通过 name 和age,在这两个字段 是创建 联合索引?还是分别在name和age上创建 单列索引呢? 多个字段查询什么情况下用联合索引 什么时候分别创建单列索引呢? 1,首先要确定优化的目标,在什么样的业务场景下,表的大小等等.如果表比较小的话,可能都不需要加索引. 2,哪些字段可以建索引,一般都where.order by 或者 group by 后面的字段. 3,记录修改的时候需要维护索引,所以会有开销,要衡…
我一个表 students 表,有3个字段 ,id,name,age 我要查询 通过 name 和age,在这两个字段 是创建 联合索引?还是分别在name和age上创建 单列索引呢? 多个字段查询什么情况下用联合索引 什么时候分别创建单列索引呢? 1,首先要确定优化的目标,在什么样的业务场景下,表的大小等等.如果表比较小的话,可能都不需要加索引. 2,哪些字段可以建索引,一般都where.order by 或者 group by 后面的字段. 3,记录修改的时候需要维护索引,所以会有开销,要衡…
 一.索引的概念 索引的用途:我们对数据查询及处理速度已成为衡量应用系统成败的标准,而采用索引来加快数据处理速度通常是最普遍采用的优化方法. 索引是什么:数据库中的索引类似于一本书的目录,在一本书中使用目录可以快速找到你想要的信息,而不需要读完全书.在数据库中,数据库程序使用索引可以重啊到表中的数据,而不必扫描整个表.书中的目录是一个字词以及各字词所在的页码列表,数据库中的索引是表中的值以及各值存储位置的列表. 索引的利弊:查询执行的大部分开销是I/O,使用索引提高性能的一个主要目标是避免全表扫…
背景: 为了提高数据库效率,建索引是家常便饭:那么当查询条件为2个及以上时,我们是创建多个单列索引还是创建一个联合索引好呢?他们之间的区别是什么?哪个效率高呢?我在这里详细测试分析下. 一.联合索引测试注:Mysql版本为 5.7.20 创建测试表(表记录数为63188): CREATE TABLE `t_mobilesms_11` ( `id` bigint(20) NOT NULL AUTO_INCREMENT, `userId` varchar(255) CHARACTER SET utf…
参考了多篇文章,分别记录,如下. 下面是第一篇的总结 http://www.jb51.net/article/76007.htm: 在MySQL中,InnoDB引擎表是(聚集)索引组织表(clustered index organize table),而MyISAM引擎表则是堆组织表(heap organize table). 聚集索引是一种索引组织形式,索引的键值逻辑顺序决定了表数据行的物理存储顺序: 而非聚集索引则就是普通索引了,仅仅只是对数据列创建相应的索引,不影响整个表的物理存储顺序.…
本节内容 1.数据库介绍2.事务3.引擎4.索引5.ORM sqlalchemy 1.数据库介绍 什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,每个数据库都有一个或多个不同的API用于创建,访问,管理,搜索和复制所保存的数据.我们也可以将数据存储在文件中,但是在文件中读写数据速度相对较慢.所以,现在我们使用关系型数据库管理系统(RDBMS)来存储和管理的大数据量.所谓的关系型数据库,是建立在关系模型基础上的数据库,借助于集合代数等数学概念和方法来处理数据库…
Mysql高级操作 索引概述: 索引是高效获取数据的数据结构 索引结构: B+Tree() Hash(不支持范围查询,精准匹配效率极高) 树的区别: 二叉树:可能产生不平衡,顺序数据可能会出现链表结构 平衡二叉树:插入需要自旋,性能根据层级而定,性能不稳定 b+tree: 主键聚簇叶子节点存放数据,非叶子节点存放索引, 二级索引非叶子节点存放索引,叶子节点存放主键 索引优缺点: 优点: 大大加快查询速度 使用分组和排序时候可以显著减少分组和排序时间 唯一索引可以保证字段唯一 可以加速表与表之间的…
从数据结构角度 1.B+树索引(O(log(n))):关于B+树索引,可以参考 MySQL索引背后的数据结构及算法原理 2.hash索引:a 仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询b 其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引c 只有Memory存储引擎显示支持hash索引…
有关普通索引和组合索引问题: 索引分单列索引和组合索引:单列索引,即一个索引只包含单个列,一个表可以有多个单列索引,但这不是组合索引:组合索引,即一个索包含多个列.   MySQL索引类型包括:   (1)普通索引是最基本的索引,它没有任何限制.它有以下几种创建方式:   ◆创建索引   CREATE INDEX indexName ON mytable(username(length));   如果是 CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型…