Deeplearning.ai课程笔记--汇总】的更多相关文章

从接触机器学习就了解到Andrew Ng的机器学习课程,后来发现又出来深度学习课程,就开始在网易云课堂上学习deeplearning.ai的课程,Andrew 的课真是的把深入浅出.当然学习这些课程还是要有一些基础的.线性代数,高等数学的一些知识. Andrew NG: Deep Learning.ai 网易云课堂(中文字幕) 推荐理由: Andrew Ng老师是讲课的能手,很多人认识他是从Stanford的经典<机器学习>课程上.Andrew老师授课思路清晰,简洁明了. 这是一份优美的信息图…
第一章 神经网络与深度学习(Neural Network & Deeplearning) DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络 DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络 第二章 改善深层神经网络 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以及优化--Week1深度学习的实用层面 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以…
目录 一. 改善过拟合问题 Bias/Variance 正则化Regularization 1. L2 regularization 2. Dropout正则化 其他方法 1. 数据变形 2. Early stopping 二. 特征缩放 1. 归一化 2. 标准化 三. 初始化参数 梯度消失.梯度爆炸 四. 梯度检验 在神经网络实施梯度检验的实用技巧和注意事项 五. 优化算法 1. mini-Batch梯度下降法 2. 动量梯度下降法 指数加权平均 指数平均加权的偏差修正 动量梯度下降法公式…
神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数据:hard to understand:如图像.文本 一. 深度学习的优势 算法.硬件计算能力的提高使神经网络运行速度变快 大数据(带labels的)使得神经网络精确度更高 在数据集不多的时候深度学习的优势并不是很明显,但是在大数据的情况下,辅助以好的算法和强计算能力,会使神经网络的运行速度和精确…
目录 一. 正交化 二. 指标 1. 单一数字评估指标 2. 优化指标.满足指标 三. 训练集.验证集.测试集 1. 数据集划分 2. 验证集.测试集分布 3. 验证集.测试集大小 四. 比较人类表现水平 1. 贝叶斯最佳误差 2. 改进方向 全部来自同一分布 当训练集来自不同分布 五. 误差分析 错误标签 六. 快速搭建系统并迭代 七. 迁移学习 八. 多任务学习 九. 端到端的学习 参考笔记:深度学习笔记 一. 正交化 正交化就是将深度学习的整个过程的所有需要解决的问题独立开来.针对于某个方…
本系列主要是我对吴恩达的deeplearning.ai课程的理解和记录,完整的课程笔记已经有很多了,因此只记录我认为重要的东西和自己的一些理解. 第一门课 神经网络和深度学习(Neural Networks and Deep Learning) 第一周:深度学习引言(Introduction to Deep Learning) 1.常用神经网络的结构与对应的数据类型 数据类型 结构化数据:表格类型的数据,有明确的行和列. 非结构化数据:音频.视频.图像.文本等类型的数据. 网络结构 标准的NN结…
一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫分类器为例,假设我们的模型表现的还不错,但是依旧存在误差,预测后错误标记的数据中有一部分狗图片被错误的标记成了猫.这个时候按照一般的思路可能是想通过训练出狗分类器模型来提高猫分类器,或者其他的办法,反正就是要让分类器更好地区分狗和猫. 但是现在的问题是,假如错误分类的100个样本中,只有5个狗样本被…
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述. 1.神经网络概要 注意:这一系列的课程中用中括号表示层数,例如\(a^{[1]}\)表示第二层(隐藏层)的数据. 2.神经网络表示 这个图的内容有点多,跟着下面的步骤来理解这个图吧: 首先看蓝色字体,这个2层的神经网络(输入层一般理解成第0层)有输入层…
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归&正规公式) Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数) Andrew Ng机器学习课程笔记--week4(神经网络) Andrew Ng机器学习课程笔记--week5(上)(神经网络损失函数&反向传播算法) Andrew Ng机器学习课程笔记--week5(下)(…
一.为什么是ML策略 如上图示,假如我们在构建一个喵咪分类器,数据集就是上面几个图,训练之后准确率达到90%.虽然看起来挺高的,但是这显然并不具一般性,因为数据集太少了.那么此时可以想到的ML策略有哪些呢?总结如下: 收集更多的数据 收集更多不同的训练集 结合梯度下降训练算法更长时间 尝试Adam算法 尝试更大的网路 尝试小一点的网络 试着用一下dropout算法 加上\(L_2\)正则项 改善网络结构,如 激活函数 隐藏层节点数量 and so on 二.正交化 正交这个词很好理解,即各个变量…