Theano Graph Structure】的更多相关文章

Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: Apply node: the application of an operator to some variable. Variable node: symbolic varibles. Op node: mathematical operation like: +,-,*,\,sqrt,sum,t…
译自:http://deeplearning.net/software/theano/extending/graphstructures.html#graphstructures 理解Theano计算原理的关键 建议阅读时间:10分钟 如果不明白内在运行机制,Theano代码的调试工作并非易事.本章就简单介绍了Theano的内部工作机理. 编写Theano code的第一步便是用符号占位符(或符号变量)书写数学表达式.表达式中的操作符包括+,-,**,sum(),tanh()等.所有这些操作符都…
论文信息 论文标题:Towards Unsupervised Deep Graph Structure Learning论文作者:Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, Shirui Pan论文来源:2022, WWW Best Paper Award candidate论文地址:download  论文代码:download 1 Introduction Deep GSL(深度图结构学习):在节点分类任务的监督下和GN…
My name is Charles Humble and I am here at QCon New York 2014 with Ian Robinson. Ian, can you introduce yourself to the InfoQ community? Hello, I am Ian Robinson, I am engineer at Neo Technology, I am based in London and I work on the Neo4j graph dat…
来自:http://deeplearning.net/software/theano/tutorial/extending_theano.html Extending Theano 该教程覆盖了如何使用新颖的ops来扩展theano.它主要关注哪些能够提供一个python实现的ops.而Extending Theano with a C Op 是基于c的op实现.该教程的第一部分介绍了theano的graphs,因为提供一个新颖的theano op需要对theano graphs有个基本的理解.…
catalogue . 引言 . LSTM NETWORKS . LSTM 的变体 . GRUs (Gated Recurrent Units) . IMPLEMENTATION GRUs 0. 引言 In this post we’ll learn about LSTM (Long Short Term Memory) networks and GRUs (Gated Recurrent Units).  LSTMs were first proposed in 1997 by Sepp Ho…
Semi-supervised Classification with Graph Convolutional Networks 2018-01-16  22:33:36 1. 文章主要思想: 2. 代码实现(Pytorch):https://github.com/tkipf/pygcn  [Introduction]: 本文尝试用 GCN 进行半监督的分类,通过引入一个 graph Laplacian regularization term 到损失函数中: 其中,L0 代表损失函数,即:gra…
Graph Attention Networks 2018-02-06  16:52:49 Abstract: 本文提出一种新颖的 graph attention networks (GATs), 可以处理 graph 结构的数据,利用 masked self-attentional layers 来解决基于 graph convolutions 以及他们的预测 的前人方法(prior methods)的不足. 对象:graph-structured data. 方法:masked self-a…
MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, no one understands machine learning. It isn't a matter of things being too complicated. Almost everything we do is fundamentally very simple. Unfortuna…
Emotion Recognition Using Graph Convolutional Networks 2019-10-22 09:26:56 This blog is from: https://towardsdatascience.com/emotion-recognition-using-graph-convolutional-networks-9f22f04b244e Recently, deep learning has made much progress in natural…