一文搞懂HMM(隐马尔可夫模型)】的更多相关文章

目录 前言 预备知识 一.估计问题 1.问题推导 2.前向算法/后向算法 二.序列问题 1.问题推导 2.维特比算法 三.参数估计问题 1.问题推导 2.期望最大化算法(前向后向算法) 总结 前言 HMM隐马尔可夫模型,这个名字看起来熟悉,其实很是陌生.它给人一种很神秘高深的感觉,确实,很强大的一个模型,在概率论统计学应该是应用广泛而且很重要的:虽说很高深强大的一个模型,其原理确实我们最基础的理论知识不断推导计算来的. 上一篇<HMM隐马尔可夫模型来龙去脉(一)>,从HMM基础理论开始,我们可…
HMM用于自然语言处理(NLP)中文分词,是用来描述一个含有隐含未知参数的马尔可夫过程,其目的是希望通过求解这些隐含的参数来进行实体识别,说简单些也就是起到词语粘合的作用. HMM隐马尔可夫模型包括: OBS 显现层(observations) States 隐含层 Start_p 初始概率 P(a) Trans_p 转移概率 P(b|a) Emit_p 发射概率 例题:小黑每天根据天气[下雨.晴天]决定当天的活动[散步.购物.清理房间],她有在朋友圈里发了一条信息“我前天在公园散步,昨天购物,…
目录 隐马尔可夫模型HMM学习导航 一.认识贝叶斯网络 1.概念原理介绍 2.举例解析 二.马尔可夫模型 1.概念原理介绍 2.举例解析 三.隐马尔可夫模型 1.概念原理介绍 2.举例解析 四.隐马尔可夫模型简单实现 五.完整代码 六.结语 隐马尔可夫模型HMM学习导航 NLP学习记录,这一章从概率图模型开始,学习常见的图模型具体的原理以及实现算法,包括了有向图模型:贝叶斯网络(BN).(隐)马尔可夫模型(MM/HMM),无向图模型:马尔可夫网络(MN).条件随机场(CRF).学习前提条件需要一…
这是一个非常重要的模型,凡是学统计学.机器学习.数据挖掘的人都应该彻底搞懂. python包: hmmlearn 0.2.0 https://github.com/hmmlearn/hmmlearn 参考链接: 一文搞懂HMM(隐马尔可夫模型) 如何用简单易懂的例子解释隐马尔可夫模型? - 知乎 有些文章里面已经介绍得非常清楚了,只是需要在项目中进行实践,然后做一下总结. 数学之美里有一章专门讲了隐含马尔科夫模型,讲得非常的通俗易懂. 在自然语言处理方面得到了广泛的应用,此外还有语音识别,机器翻…
HMM定义 1)隐马尔科夫模型 (HMM, Hidden Markov Model) 可用标注问题,在语音识别. NLP .生物信息.模式识别等领域被实践证明是有效的算法. 2)HMM 是关于时序的概率模型,描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,再由各个状态生成观测随机序列的过程. 3)隐马尔科夫模型随机生成的状态随机序列,称为状态序列:每个状态生成一个观测,由此产生的观测随机序列,称为观测序列.序列的每个位置可看做是一个时刻. 隐马尔科夫模型的贝叶斯网络 由于Z1,Z2,...…
隐马尔科夫模型HMM 序言 文本序列标注是自然语言处理中非常重要的一环,我先接触到的是CRF(条件随机场模型)用于解决相关问题,因此希望能够对CRF有一个全面的理解,但是由于在学习过程中发现一个算法像jar包依赖一样依赖于各种算法,就像提到CRF模型,那么肯定不得不提一下HMM等模型,如果不能很好的理解这些算法,那么其实也不算完全搞明白!因此我会在算法的介绍中对涉及到的算法知识尽我所能尽量详细和朴实的说明. 网上也有很多算法说明,但是感觉对一些向我一样刚入门的小白用户很不友好,大堆的数据公式,甚…
参考如下博客: http://www.52nlp.cn/itenyh%E7%89%88-%E7%94%A8hmm%E5%81%9A%E4%B8%AD%E6%96%87%E5%88%86%E8%AF%8D%E4%B8%80%EF%BC%9A%E5%BA%8F…
http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程,是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型. 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的.这样状态的转换概率便是全部的参数.[马尔科夫模型HMM概述] 而在隐马尔可夫模型中,状态并不是直接可见的…
隐马尔可夫模型(Hidden Markov Model) 隐马尔可夫模型(Hidden Markov Model, HMM)是一个重要的机器学习模型.直观地说,它可以解决一类这样的问题:有某样事物存在一定的状态,但我们无法得知某个时刻(或位置)它所处在的状态,但是我们有一个参照事物,我们知道这个参照事物在某个时刻(或位置)的状态并认为参照事物的状态和原事物的状态存在联系,那么我们可以使用机器学习来推测原事物最有可能在一个时刻(或位置)处在什么样的状态.也就是说,这是一个基于概率统计的模型. 举一…
写在文前:原博文地址:https://www.cnblogs.com/skyme/p/4651331.html 什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有规则的运动状态.熵的中文意思是热量被温度除的商.负熵是物质系统有序化,组织化,复杂化状态的一种度量. 熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能…
什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有规则的运动状态.熵的中文意思是热量被温度除的商.负熵是物质系统有序化,组织化,复杂化状态的一种度量. 熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大. 一滴墨水滴在清水中,部成了一杯淡蓝色溶液 热水晾在空气中…
HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑.   本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发.   隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型在实际的生活和生产中有着广泛的应用,包括语音识别,自…
隐马尔可夫模型(HMM)及Viterbi算法 https://www.cnblogs.com/jclian91/p/9954878.html HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑.   本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发.   隐马尔可夫模型(HMM,hidden Markov model)是可用于标…
HMM简介 对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑. 本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发. 隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型在实际的生活和生产中有着广泛的应用,包括语音识别,自然语言处理,…
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更新××××× 隐马尔可夫(HMM)好讲,简单易懂不好讲.我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子.我希望我的读者不是专家,而是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式.霍金曾经说过,你多写一个公式,就会少一半的读者.所以时间简史这本关于物理的书和麦当娜关于性的书…
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google “I Love Natural Language Processing”估计就能找到)翻译后的HMM入门介绍如下,由于原文分了很多章节,我嫌慢了还是一次性整理,长文慎入吧. 一.介绍(Introduction) 我们通常都习惯寻找一个事物在一段时间里的变化模式(规律).这些模式发生在很多领域,比如计…
本文简单整理了以下内容: (一)贝叶斯网(Bayesian networks,有向图模型)简单回顾 (二)隐马尔可夫模型(Hidden Markov model,HMM) 写着写着还是写成了很规整的样子.以后可能会修改. (一)贝叶斯网简单回顾 图模型(PGM)根据边是否有向,可以分为有向图模型和无向图模型. 待补充-- (二)隐马尔可夫模型 隐马尔可夫模型(Hidden Markov model,HMM)属于生成式模型,被广泛用于序列标注问题,在语音语言领域里比较出名的应用包括语音识别.中文分…
hmm隐马尔可夫真的那么难吗? 首先上代码 这里是github上的关于hmm的:链接 概率计算问题:前向-后向算法 学习问题:Baum-Welch算法(状态未知) 预测问题:Viterbi算法 https://github.com/TimVerion/HMM_code 需要的理论基础(可以跳过) 信息熵 首先了解一下过去化学学习的熵,热力学中表征物质状态的参量之一,用符号S表示,其物理意义是体系混乱程度的度量.克劳修斯于 1865 年的论文中定义了“熵” ,其中有两句名言:“宇宙的能量是恒定的.…
机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了.Russell等在文献[1]中指出:"在统计学中,图模型这个术语指包含贝叶斯网络在内的比较宽泛的一类数据结构." 维基百科中更准确地给出了PGM的定义:"A graphical model or probabilistic graphical model is a probabilistic model for which a graph expresses t…
本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定这个大名鼎鼎的模型,也省着之后遇到再费心.     Outline 模型引入与背景介绍 从概率图讲起 贝叶斯网络.马尔科夫模型.马尔科夫过程.马尔科夫网络.条件随机场 HMM的形式化表示 Markov Model的形式化表示 HMM的形式化表示 HMM的两个基本假设 HMM的三个基本问题 Evalu…
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态参数都离散的马尔可夫过程.HMM是在Markov链的基础上发展起来的,由于实际问题比Markov链模型所描述的更为复杂,观察到的时间并不是与状态一一对应的,而是通过一组概率分布相联系,这样的模型称为HMM.HMM是双重随机过程:其中之一是Markov链,这是基本随机过程,它描述状态的转移,是隐含的.…
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个状…
Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的随机文本".1 2. 隐马尔科夫过程1 3. 隐马模型基本要素及基本三问题2 4. 维特比算法2 5. 应用 HMM一开始是在信息论中应用的,后来才被应用到自然语言处理还有其他图像识别等各个2 6. 扩展数学之美系列十九 -- 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)2…
介绍 崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首先,本文会介绍声称概率模式的系统,用来预测天气的变化 然后,我们会分析这样一个系统,我们希望预测的状态是隐藏在表象之后的,并不是我们观察到的现象.比如,我们会根据观察到的植物海藻的表象来预测天气的状态变化. 最后,我们会利用已经建立的模型解决一些实际的问题,比如根据一些列海藻的观察记录,分析出这几天…
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matching 3.3. 3.3. Viterbi算法 4. 4. 相关部分论文工作 4.1. 4.1. A HMM based MM for wheelchair navigation 4.2. 4.2. MM for low-sampling-rate GPS trajectories 4.3. 4.3.…
作者:Yang Eninala 链接:https://www.zhihu.com/question/20962240/answer/33438846 来源:知乎 著作权归作者所有,转载请联系作者获得授权.       隐马尔可夫(HMM)好讲,简单易懂不好讲.我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子.我希望我的读者不是专家,而是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式.霍金曾经说过,你多写一个公式,就会少一半的读者.所以时间简史这本关于物理的书和麦当娜关于性…
本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩,且在原文的基础上还提供了若干程序实例,是初学者入门 HMM 的好材料.原文中存在若干笔误,这里结合 HMM 学习最佳范例 的作者和读者的建议,一并做了修改,供大家参考. 相关链接 HMM 自学教程(一)引言 HMM 自学教程(二)生成模型 HMM 自学教程(三)隐藏模式 HMM 自学教程(四)隐马…
定义隐马尔科夫模型可以用一个三元组(π,A,B)来定义:π 表示初始状态概率的向量A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率B =(bij)混淆矩阵 P(Yi|Xj) 在某个时刻因隐藏状态为Xj而观察状态为Yi的概率值得注意的是,在状态转移矩阵中的每个概率都是时间无关的,也就是说我们假设这个概率是固定的,不随时间变化.当然,这是马尔科夫模型最不切合实际的一个假设. 隐马尔科夫模型的使用如果一个模型可以被描述成一个隐马尔科夫模型,有三个问…
理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM) 参考链接:http://www.zhihu.com/question/20962240 参考链接:http://blog.csdn.net/ppn029012/article/details/8923501 本博文链接:http://www.cnblogs.com/dzyBK/p/5011727.html 1 题设 假设有n个骰子(从1~n编号),每个骰子有m面,每面标有一个数字且不重复,数字取值限制在[1,m].(1…
转自:http://blog.csdn.net/likelet/article/details/7056068 隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢  52nlp 对 HMM 的详细介绍. 考虑下面交通灯的…