poj 2773 利用欧拉函数求互质数】的更多相关文章

题意:找到与n互质的第 k个数 开始一看n是1e6 敲了个暴力结果tle了,后来发现k达到了 1e8 所以需要用到欧拉函数. 我们设小于n的 ,与n互质的数为  (a1,a2,a3.......a(phi(n))) 那么显然,在区间  [ k*n , (k+1)*n ]内的互质数即为 k*n+(a1,a2,a3.......a(phi(n))) 所以只需要求出 (a1,a2,a3.......a(phi(n))) 就可以利用欧拉函数快速找到后面的数 代码如下: #include <iostrea…
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一下前缀和就行 #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; ; const int INF=0x3f3f3…
题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2,n)+gcd(3,n)+…………gcd(n-1,n)+gcd(n,n),(1<=n<2^31)是多少? 放心吧!!!暴力肯定是做不出来的,如果你数论只会gcd(和我一样),那还是学点东西再来挑战这个题吧!    这个题需要用到欧拉函数的知识…… 欧拉函数的定义:对正整数n,欧拉函数是小于n的正整数…
题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n不互质,那么只要枚举n的全部约数,对于一个约数d,若使gcd(i/d,n/d)互质,这部分的gcd和=d*欧拉函数phi(n/d). 不断暴力从小到大枚举约数,这样就把gcd和切成好多个部分,累加起来就行了. 其实还可以公式化简,不过实在太繁琐了.可以参考金海峰神的解释. 由于要求好多欧拉函数,每次…
Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 5647 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b)…
题目链接 题意 : 求小于等于n中与n互质的数的个数. 思路 : 看数学的时候有一部分是将欧拉函数的,虽然我没怎么看懂,但是模板我记得了,所以直接套了一下模板. 这里是欧拉函数的简介. #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> using namespace std; int main() { int x…
点击打开链接 //求SUM(gcd(i,n), 1<=i<=n) /* g(n)=gcd(i,n),根据积性定义g(mn)=g(m)*g(n)(gcd(m,n)==1) 所以gcd(i,n)是积性的,所以f(n)=sum(gcd(i,n))是积性的, f(n)=f(p1^a1*p2^a2*...*pn^an)=f(p1^a1)*f(p2^a2)*..*f(pn^an) 求f(p1^a1)就可以了,设d为p1^a1的一个因子,gcd(i,n)的个数为phi(n/d) (gcd(i,n/d)==1…
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article/details/35774889 最主要的欧拉函数: 欧拉函数:求小于n的与n互质的个数   欧兰函数公式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)-..(1-1/pn),当中p1, p2--pn为x的全部质因数   就是要求这种式子啦,只是求这条式子.相信有非…
pid=26358">https://uva.onlinejudge.org/index.phpoption=com_onlinejudge&Itemid=8&category=279&page=show_problem&problem=3937 题目:http://acm.bnu.edu.cn/v3/external/124/12493.pdf 大致题意:圆上有偶数n个点.每m个点连起来.最后能够把全部点串联起来就合法.问有多少个m能够完毕串联,串联后形状…
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^(p-1)=1 (mod p).这和求原根有一定联系. 再顺便提一下欧拉定理:若 a,n 互质,那么 a^Φ(n)=1(mod n).    还有一个推论:若x = y(mod φ(n) 且 a与n 互质,则有 a^x=a^y(mod n). 百度百科是这么说的:"原根,归根到底就是 x^(p-1)=…