overfitting过拟合】的更多相关文章

来自:https://www.zhihu.com/question/32246256 其实不完全是噪声和假规律会造成过拟合. (1)打个形象的比方,给一群天鹅让机器来学习天鹅的特征,经过训练后,知道了天鹅是有翅膀的,天鹅的嘴巴是长长的弯曲的,天鹅的脖子是长长的有点曲度,天鹅的整个体型像一个"2"且略大于鸭子.这时候你的机器已经基本能区别天鹅和其他动物了. (2)然后,很不巧你的天鹅全是白色的,于是机器经过学习后,会认为天鹅的羽毛都是白的,以后看到羽毛是黑的天鹅就会认为那不是天鹅. (3…
来自:http://blog.csdn.net/fengzhe0411/article/details/7165549 最近几天在看模式识别方面的资料,多次遇到“overfitting”这个概念,最终觉得以下解释比较容易接受,就拿出来分享下. overfittingt是这样一种现象:一个假设在训练数据上能够获得比其他假设更好的拟合,但是在训练数据外的数据集上却不能很好的拟合数据.此时我们就叫这个假设出现了overfitting的现象.出现这种现象的主要原因是训练数据中存在噪音或者训练数据太少.而…
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器).其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值.将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器.对adaBoost算法的研究以及应用大多集中于分类问题,同时也出现了一些在回归问题上的应用.就其应用ad…
本文不定期更新.原创文章,转载请注明出处,谢谢. Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器).Adaboost算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值.将修改过权值的新数据集送给下层分类器进行训练,最后将每次得到的分类器最后融合起来,作为最后的决策分类器. 算法概述 1.先通过对N个训练样本的学习得…
Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign 假设 (Hypothesis):$$h_\theta(x) = g(\theta^Tx)$$ $$g(z) = \frac{1}{1+e^{-z}}$$ 其中g(z)称为sigmoid函数,其函数图象如下图所示,可以看出预测值$y$的取值范围是(0, 1),这样对于 $h_\theta(x) \geq 0.5$, 模…
上一篇文章提到了数据挖掘.机器学习.深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html 深度学习具体的内容可以看这里: 参考了这篇文章:https://zhuanlan.zhihu.com/p/20582907?refer=wangchuan  <王川: 深度学习有多深, 学了究竟有几分? (一)> 笔记:神经网络的研究,因为人工智能的一位大牛Marvin Minsky的不看好,并且出书说明其局限性,而出现二十年的长期低潮.   在…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
Adaboost.RandomFrest.GBRT都是基于决策树的组合算法 Adaboost是通过迭代地学习每一个基分类器,每次迭代中,把上一次错分类的数据权值增大,正确分类的数据权值减小,然后将基分类器的线性组合作为一个强分类器,同时给分类误差率较小的基本分类器以大的权值,给分类误差率较大的基分类器以小的权重值. Adaboost使用的是自适应的方法,其中概率分布式变化的,关注的是难分类的样本. 随机森林RandomForest算法通过随机的方式建立一个森林,森林里的树相互独立.在新样本进来时…
过拟合(over-fitting) 欠拟合 正好 过拟合 怎么解决 1.丢弃一些不能帮助我们正确预测的特征.可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA) 2.正则化. 保留所有的特征,但是减少参数的大小(magnitude) 回归问题的模型是 是高次项导致了这个问题 我们决定要减少…
Classification It's not a good idea to use linear regression for classification problem. We can use logistic regression algorism, which is a classification algorism 想要\(0\le h_{\theta}(x) \le 1\), 只需要使用sigmoid function (又称为logistic function) \[ \larg…