TensorFlow架构】的更多相关文章

1. tensorflow工作流程 如官网所示: 根据整体架构或者代码功能可以分为: 图1.1 tensorflow架构 如图所示,一层C的api接口将底层的核运行时部分与顶层的多语言接口分离开. 而根据整个的工作流程,又可以分为: 图1.2 不同系统组件之间的交互 而图1.2也是tensorflow整个工作的流程,其中主要分为四个部分: 1.1. 客户端client 将整个计算过程转义成一个数据流graph 通过session,将graph传递给master执行 ps:假设我们使用的是pyth…
TensorFlow是什么? TensorFlow基于数据流图,用于大规模分布式数值计算的开源框架.节点表示某种抽象的计算,边表示节点之间相互联系的张量. TensorFlow支持各种异构的平台,支持多CPU/GPU,服务器,移动设备,具有良好的跨平台的特性:TensorFlow架构灵活,能够支持各种网络模型,具有良好的通用性:此外,TensorFlow架构具有良好的可扩展性,对OP的扩展支持,Kernel特化方面表现出众. 系统概述 TensorFlow的系统结构以C API为界,将整个系统分…
0 - TensorFlow 基于数据流图,节点表示某种抽象计算,边表示节点之间联系的张量. Tensorflow结构灵活,能够支持各种网络模型,有良好的通用性和扩展性. 1 - 系统概述 TensorFlow以$C\ API$为界限,分为前端系统(提供编程模型,负责构造计算图)以及后端系统(提供运行时环境,负责执行计算图),如下图. 1.1 - 模块Client Client是一个支持多语言的编程环境,它提供基于计算图的编程模型,方便用户构造各种复杂的计算图,实现各种形式的模型设计和构建.Cl…
TensorFlow https://mp.weixin.qq.com/s/tEyX596WXTzsABXaeTesug…
[源码解析] TensorFlow 分布式环境(1) --- 总体架构 目录 [源码解析] TensorFlow 分布式环境(1) --- 总体架构 1. 总体架构 1.1 集群角度 1.1.1 概念 1.1.2 示意图 1.1.3 创建 1.1.3.1 创建集群 1.1.3.2 创建任务 1.1.3.3 指定设备 1.2 分布式角度 1.2.1 概念 1.2.2 示意图 1.3 系统角度 1.3.1 概念 1.3.2 示意图 1.4 图操作角度 1.5 通信角度 2. Server 2.1 接…
人工智能系统Google开源的TensorFlow官方文档中文版 2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,机器学习作为人工智能的一种类型,可以让软件根据大量的数据来对未来的情况进行阐述或预判.如今,领先的科技巨头无不在机器学习下予以极大投入.Facebook.苹果.微软,甚至国内的百度.Google 自然也在其中.「TensorFlow」是 Google 多年以来内部的机器学习系统.如今,Google 正在将此系统成为开源系统,并将此系统的参数公布给业界…
作者:王嘉俊 王婉婷 TensorFlow 是 Google 第二代深度学习系统,今天宣布完全开源.TensorFlow 是一种编写机器学习算法的界面,也可以编译执行机器学习算法的代码.使用 TensorFlow 编写的运算可以几乎不用更改,就能被运行在多种异质系统上,从移动设备(例如手机和平板)到拥有几百台的机器和几千个 GPU 之类运算设备的大规模分布式系统. TensorFlow 降低了深度学习的使用门槛,让从业人员能够更简单和方便地开发新产品.作为Google 发布的“平台级产品”,很多…
发布人:TensorFlow 团队 原文链接:http://developers.googleblog.cn/2017/09/tensorflow.html TensorFlow 1.3 引入了两个重要功能,您应当尝试一下: 数据集:一种创建输入管道(即,将数据读入您的程序)的全新方式. 估算器:一种创建 TensorFlow 模型的高级方式.估算器包括适用于常见机器学习任务的预制模型,不过,您也可以使用它们创建自己的自定义模型. 下面是它们在 TensorFlow 架构内的装配方式.结合使用这…
算法工程师为什么也要向社区贡献代码? [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] “做算法的人要熟悉算法框架源码吗?算法工程师难道不应该会使用框架建模就可以了吗?如何成为具有一定竞争力的算法工程师?”... 我经常被不同的人问类似这样的问题.坦白地说从我个人经验来看,身边算法做的不错的人对算法框架源码普遍熟悉,而且算法建模这件事在当前来看还并不能纯粹的与底层隔离,因为你会经常与计算性能,算法实现原理打交道.当然,我也见过一些…
近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较好的价值,而深度学习在大数据场景下更能揭示数据内部的逻辑关系.本文就以大数据作为场景,通过自底向上的教程详述在大数据架构体系中如何应用深度学习这一技术.大数据架构中采用的是hadoop系统以及Kerberos安全认证,深度学习采用的是分布式的Tensorflow架构,hadoop解决了大数据的存储问…