二项式反演/minmax容斥初探】的更多相关文章

世界是物质的,物质是运动的,运动是有规律的,规律是可以被认识的 二项式反演 \[ g_n=\sum_{i=0}^n \binom{n}if_i\Rightarrow f_n=\sum_{i=0}^n(-1)^{n-i}\binom{n}ig_i \] 证明如下 \[ \begin{aligned} \sum_{i=0}^n(-1)^{n-i}\binom{n}ig_i &=\sum_{i=0}^n(-1)^{n-i}\binom{n}i\sum_{j=0}^i\binom{i}jf_i\\ &am…
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \choose j} g_j \] 同时, 若 \[g_i=\sum_{j=1}^i (-1)^j {i \choose j} f_j\] , 则有 \[f_i=\sum_{j=1}^i (-1)^j {i \choose j} g_j\] 通过反演原理和组合数的性质不难证明. 0/1? todo Sti…
[LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le y\le M_y\),并且不能不走.同时有\(k\)个限制,表示不能同时\(x=y=k_i\),保证所有\(k_i\)都是\(G\)的倍数.求恰好跳了\(R\)步到达的方案数. 题解 如果不存在不能走的点的限制,那么两维可以分开考虑.比如接下来只考虑\(x\)上的问题. 因为存在步长的限制,所以设\…
说实话这些博客早晚都要整理后上m***999. 最值反演是针对一个集合中最大/最小值的反演. \[ \max\{S\}=\sum_{T\subset S}(-1)^{|T|+1}\min\{T\} \] \[ \min\{S\}=\sum_{T\subset S}(-1)^{|T|+1}\max\{T\} \] 如{1,2,3,4}的最大值=1+2+3+4-1-1-1-2-2-3+1+1+1+2-1=4. 求LCM 将每个数\(a_i\)分解为\(\prod_{p_j=prime[i][]} p…
Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5254    Accepted Submission(s): 2676Special Judge Problem Description In your childhood, do you crazy for collecting the beautiful…
题目描述:输入一个大小为\(n\)的集合\(S\),求\(\text{lcm}_{k\in S}f_k\),其中\(f_k\)是第$$个Fibonacci数. 数据范围:\(n\le 5\times 10^4,u\le 10^6\) 数论经典题? 首先你要想到min-max容斥. \[ \text{lcm}(f_S)=\prod_{\varnothing\ne T\subseteq S}\gcd(f_T)^{(-1)^{|T|-1}} \] 然后你知道\(\gcd(f_a,f_b)=f_\gcd…
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博客中给出了详细证明,这里就不再赘述了. 考虑怎样将 LCM 转化为 gcd,注意到有个东西叫 Min-Max 容斥,即对于集合 \(S\),\(\max(S)=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|+1}\min(T)\),该性质同样可以…
min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}f(i) \] 一些定义 \(\max (S),\min (S)\)表示分别集合\(S\)的最大,最小元素 套路式子 \[ \max(S)=\sum_{\varnothing\not=S\subseteq T}(-1)^{|T|-1}\min(T) \] 证明 首先我…
min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in S}(-1)^{|T|-1}\min(T)\] 这个东西叫 min-max容斥. 证明可以拿二项式反演证 例题 hdu4336 Card Collector 题目 有 \(n\) 种卡片,每一秒都有 \(P_i\) 的概率获得一张第 \(i\) 种卡片,求每张卡片都至少有一张的期望时间. 记 \(…
[Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出来后也不难解出. 那么我们来考虑如何求解\(k-max\),设出容斥系数\(f(|T|)\) \[kmax(S)=\sum_{T\subset S}f(|T|)min(T)\] 显然是从小到大考虑每个元素作为\(min\)时候的贡献,并且我们只需要其中第\(k\)大的贡献. 假设\(n=|S|\),…