首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
广义线性模型 R--glm函数
】的更多相关文章
第三章 广义线性模型(GLM)
广义线性模型 前面我们举了回归和分类得到例子.在回归的例子中,$y \mid x;\theta \sim N(u,\sigma ^{2})$,在分类例子中,$y\mid x;\theta \sim Bbernoulli(\phi)$ 广义线性模型是基于指数函数族的,指数函数族原型为: $p(y;\eta) = b(y)exp(\eta^{T}T(y)-a(\eta))$ $\eta$为自然参数,$T(y)$为充分统计量,一般情况下$T(y)=y$.选择固定的T,a,b定义一个分布,参数为$\…
广义线性模型(GLM)
一.广义线性模型概念 在讨论广义线性模型之前,先回顾一下基本线性模型,也就是线性回归. 在线性回归模型中的假设中,有两点需要提出: (1)假设因变量服从高斯分布:$Y={{\theta }^{T}}x+\xi $,其中误差项$\xi \sim N(0,{{\sigma }^{2}})$,那么因变量$Y\sim N({{\theta }^{T}}x,{{\sigma }^{2}})$. (2)模型预测的输出为$E[Y]$,根据$Y={{\theta }^{T}}x+\xi $,$E[Y]=E[{{…
CS299笔记:广义线性模型
指数分布族 我们称一类分布属于指数分布族(exponential family distribution),如果它的分布函数可以写成以下的形式: \[ \begin{equation} p(y;\eta) = b(y) \exp(\eta^{T}T(y) - a(\eta)) \tag{*} \end{equation} \] 其中,\(\eta\)被称为自然参数(natural parameter),\(T(y)\)被称为充分统计量(sufficient statistic),\(a(\eta…
广义线性模型(Generalized Linear Model)
广义线性模型(Generalized Linear Model) http://www.cnblogs.com/sumai 1.指数分布族 我们在建模的时候,关心的目标变量Y可能服从很多种分布.像线性回归,我们会假设目标变量Y服从正态分布,而逻辑回归,则假设服从伯努利分布.在广义线性模型的理论框架中,则假设目标变量Y则是服从指数分布族,正态分布和伯努利分布都属于指数分布族,因此线性回归和逻辑回归可以看作是广义线性模型的特例.那什么是指数分布族呢?若一个分布的概率密度或者概率分布可以写成这个形式,…
R语言实战(八)广义线性模型
本文对应<R语言实战>第13章:广义线性模型 广义线性模型扩展了线性模型的框架,包含了非正态因变量的分析. 两种流行模型:Logistic回归(因变量为类别型)和泊松回归(因变量为计数型) glm()函数的参数 分布族 默认的连接函数 binomial (link = “logit”) gaussian (link = “identity”) gamma (link = “inverse”) inverse.gaussian (link = “1/mu^2”) poisson (link =…
广义线性模型 GLM
Logistic Regression 同 Liner Regression 均属于广义线性模型,Liner Regression 假设 $y|x ; \theta$ 服从 Gaussian 分布,而 Logistic Regression 假设 $y|x ; \theta$ 服从 Bernoulli 分布. 这里来看线性回归,给定数据集 $\left \{ (x_i,y_i) \right \}_{i=1}^N$ ,$x_i$ 与 $y_i$ 的关系可以写成 $y_i = \theta^Tx_…
R语言-广义线性模型
使用场景:结果变量是类别型,二值变量和多分类变量,不满足正态分布 结果变量是计数型,并且他们的均值和方差都是相关的 解决方法:使用广义线性模型,它包含费正太因变量的分析 1.Logistics回归(因变量为类别型) 案例:匹配出发生婚外情的模型 1.查看数据集的统计信息 library(AER) data(Affairs,package = 'AER') summary(Affairs) table(Affairs$affairs) 结果:该数据从601位参与者收集了,婚外情次数,性别,年龄,…
[读书笔记] R语言实战 (十三) 广义线性模型
广义线性模型扩展了线性模型的框架,它包含了非正态的因变量分析 广义线性模型拟合形式: $$g(\mu_\lambda) = \beta_0 + \sum_{j=1}^m\beta_jX_j$$ $g(\mu_\lambda)为连接函数$. 假设响应变量服从指数分布族中某个分布(不仅仅是正态分布),极大扩展了标准线性模型,模型参数估计的推导依据是极大似然估计,而非最小二乘法. 可以放松Y为正态分布的假设,改为Y服从指数分布族中的一种分布即可 glm()函数:glm(formula,family=f…
从广义线性模型(GLM)理解逻辑回归
1 问题来源 记得一开始学逻辑回归时候也不知道当时怎么想得,很自然就接受了逻辑回归的决策函数--sigmod函数: 与此同时,有些书上直接给出了该函数与将 $y$ 视为类后验概率估计 $p(y=1|x)$ 等价,即 并给出了二分类(标签 $yin(0,1)$)情况下的判别方式: 但今天再回过头看的时候,突然就不理解了,一个函数值是怎么和一个概率联系起来了呢?有些人解释说因为 $h_{theta}(x)$ 范围在0~1之间啊,可是数值在此之间还是没说明白和概率究竟有什么关系.所以,前几天看了一些资…
广义线性模型 R--glm函数
R语言glm函数学习: [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. glm函数介绍: glm(formula, family=family.generator, data,control = list(...)) family:每一种响应分布(指数分布族)允许各种关联函数将均值和线性预测器关联起来. 常用的family: binomal(link='logit') ----响应变量…