1038 X^A Mod P 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 X^A mod P = B,其中P为质数.给出P和A B,求< P的所有X. 例如:P = 11,A = 3,B = 5. 3^3 Mod 11 = 5 所有数据中,解的数量不超过Sqrt(P).   Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 100) 第2 - T + 1行:每行3个数P A B,中间用空格隔开.(1 <= A, B <…
先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Giant Step解决离散对数问题) http://blog.csdn.net/a601025382s/article/details/11747747 Baby Step Giant Step算法:复杂度O( sqrt(C) ) 我是综合上面两个博客,才差不多懂得了该算法. 先给出AC神的方法: 原创帖…
不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostream> #include <stdio.h> #include <math.h> #include <string.h> #define SIZE 99991 /* POJ 3243 AC 求解同余方程: A^x=B(mod C) */ using namespace…
什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSGS算法中是要求a^m在%c条件下的逆元的,如果a.c不互质根本就没有逆元.) 如果x有解,那么0<=x<C,为什么? 我们可以回忆一下欧拉定理: 对于c是素数的情况,φ(c)=c-1 那么既然我们知道a^0=1,a^φ(c)=1(在%c的条件下).那么0~φ(c)必定是一个循环节(不一定是最小的)…
高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. 给定\(a,b,p\),其中\(gcd(a,p)=1\),求方程\(a^x \equiv b(mod\ p)\)的最小非负整数解. 普通分析和朴素算法 先介绍一下欧拉定理: 如果正整数\(a\),\(p\)互质,则\(a^{\phi(p)}\equiv1(mod\ p)\). 注意到题中所给的条件…
/************************************* ---高次同余方程模板BabyStep-GiantStep--- 输入:对于方程A^x=B(mod C),调用BabyStep(A,B,C),(0<=A,B,C<=10^9) 输出:无解放回-1,有解放回最小非负整数x 复杂度:O(C^0.5),只与C有关,与A,B的大小无关 ************************************/ typedef long long ll; #define HAS…
/*poj 3243 *解决高次同余方程的应用,已知 X^Y = K mod Z, 及X,Z,K的值,求 Y 的值 */ #include<cstdio> #include<cstring> #include<cmath> using namespace std; #define lint __int64 #define MAXN 131071 struct HashNode { lint data, id, next; }; HashNode hash[MAXN<…
定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b) int exgcd(int a,int b,int &x,int &y){ ){x=,y=;return a;} int d=exgcd(b,a%b,x,y); int z=x;x=y;y=z-y*(a/b); return d; } 当d可以整除c时,一般方程ax+by=c的一组特解求法: 1.求ax+by=d的特解x0,y0 2.ax+by=c的特解为(c/d)x0,(c/d)y0 上述方程的通解:(c/d)…
求方程:的解个数 分析:设,那么上述方程解的个数就与同余方程组:的解等价. 设同于方程的解分别是:,那么原方程的解的个数就是 所以现在的关键问题是求方程:的解个数. 这个方程我们需要分3类讨论: 第一种情况: 对于这种情况,如果方程的某个解设为,那么一定有,可以得到,即 所以方程的解个数就是:,也就是 第二种情况: 这样也就是说p|B,设,,本方程有解的充要条件是A|t, 那么我们设t=kA, 所以进一步有:,因为,这样又转化为第三种情况了. 第三种情况: 那么我们要求指标:求指标的话又要求原根…
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1038.html 题目传送门 - 51Nod1038 题意 题解 在模质数意义下,求高次剩余,模板题. UPD(2018-09-10): 详见数论总结. 传送门 - https://www.cnblogs.com/zhouzhendong/p/Number-theory-Residue-System.html 代码 优化了一下代码……原来的那个在这一份后面…… #include <bits/stdc…