比较排序:各元素的次序依赖于它们之间的比较{插入排序O(n**2) 归并排序O(nlgn) 堆排序O(nlgn)快速排序O(n**2)平均O(nlgn)} 本章主要介绍几个线性时间排序:(运算排序非比较排序)计数排序O(k+n)基数排序O() 第一节:用决策树分析比较排序的下界 决策树:倒数第二层满,第一层可能满的二叉树,它用来表示所有元素的比较操作{于此来分析下界},忽略控制,移动操作 1:2 #A[1]和A[2]比 <= 走左边 >走右边 <3,1,2> 最后的结果 下标对应排…
对于曾经,假设要我求第k小元素.或者是求前k大元素,我可能会将元素先排序,然后就直接求出来了,可是如今有了更好的思路. 一.线性时间内求第k小元素 这个算法又是一个基于分治思想的算法. 其详细的分治思路例如以下: 1.分解:将A[p,r]分解成A[p,q-1]和A[q+1,r]两部分.使得A[p,q-1]都小于A[q],A[q+1,r]都不小于A[q]; 2.求解:假设A[q]恰好是第k小元素直接返回,假设第k小元素落在前半区间就到A[p,q-1]递归查找.否则到A[q+1,r]中递归查找. 3…
序 到目前为止,关于排序的问题,前面已经介绍了很多,从插入排序.合并排序.堆排序以及快速排序,每一种都有其适用的情况,在时间和空间复杂度上各有优势.它们都有一个相同的特点,以上所有排序的结果序列,各个元素的次序都是基于输入元素之间的比较,因此,把这类排序成为比较排序. 对一个含有n个元素的输入序列,任何比较排序在最坏情况下都要用(nlogn)次比较来进行排序,由此也可以知道合并排序和堆排序是渐进最优的. 本章介绍了三种线性时间排序算法,计数排序.基数排序和桶排序,这些算法都是用非比较的操作来确定…
本文参考自一博文与<算法导论>. <算法导论>之前介绍了合并排序.堆排序和快速排序的特点及运行时间.合并排序和堆排序在最坏情况下达到O(nlgn),而快速排序最坏情况下达到O(n^2),平均情况下达到O(nlgn),因此合并排序和堆排序是渐进最优的.这些排序在执行过程中各元素的次序基于输入元素间的比较,称这种算法为比较排序.接下来介绍了用决策树的概念及如何用决策树确定比较排序算法比较时间的下界,最后讨论三种线性时间运行的算法:计数排序.基数排序和桶排序.这些算法在执行过程中不需要比…
1. 桶排序 1.1 范围为1-M的桶排序 如果有一个数组A,包含N个整数,值从1到M,我们可以得到一种非常快速的排序,桶排序(bucket sort).留置一个数组S,里面含有M个桶,初始化为0.然后遍历数组A,读入Ai时,S[Ai]增一.所有输入被读进后,扫描数组S得出排好序的表.该算法时间花费O(M+N),空间上不能原地排序. 初始化序列S 遍历A修改序列S的项 举个例子,排序一个数组[5,3,6,1,2,7,5,10] 值都在1-10之间,建立10个桶: [0 0 0 0 0 0 0 0…
序 高速排序(QuickSort)也是一种排序算法,对包括n个数组的输入数组.最坏情况执行时间为O(n^2). 尽管这个最坏情况执行时间比較差.可是高速排序一般是用于排序的最佳有用选择.这是由于其平均性能相当好.期望的执行时间为O(nlgn).且O(nlgn)中隐含的常数因子非常小.另外它还能够进行就地排序在虚拟环境中也能非常好的工作. GitHub chapter 7 程序代码下载 原理 高速排序也和合并排序一样,基于分治法,分为分解.解决.合并三个步骤. 分解:数组array[low-hig…
算法导论 第一章 算法     输入--(算法)-->输出   解决的问题     识别DNA(排序,最长公共子序列,) # 确定一部分用法     互联网快速访问索引     电子商务(数值算法and数论)     交通图...(图论,旅行社问题)     拓扑排序 #     第二章  2.1插入排序           #p11 伪代码预定留意一下  #(算法导论 第3版 中文)       循环不变式?         循环 j++         不变 A[1..j-1] 一直有序  …
自从打ACM以来也算是用归并排序了好久,现在就写一篇博客来介绍一下这个算法吧 :) 图片来自维基百科,显示了完整的归并排序过程.例如数组{38, 27, 43, 3, 9, 82, 10}. 在算法导论讲分治算法一章的时候提到了归并排序.首先,归并排序是一个分治算法. 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表, 即把待排序序列分为若干个有序的子序列,再把有序的子序列合并为整体有序序列. merg() 函数是用来合并两个已有序的数组.  是整个算法的关键. 那么归并…
计数排序 计数排序是一种高效的线性排序. 它通过计算一个集合中元素出现的次数来确定集合如何排序.不同于插入排序.快速排序等基于元素比较的排序,计数排序是不需要进行元素比较的,而且它的运行效率要比效率为O(nlgn)的比较排序高. 计数排序有一定的局限性,其中最大的局限就是它只能用于整型或那么可以用整型来表示的数据集合.原因是计数排序利用一个数据的索引来记录元素出现的次数,而这个数组的索引就是元素的数值.例如,如果整数3出现过4次,那么4将存储到数组索引为3的位置上.同时,我们还需要知道集合中最大…
第i个顺序统计量:该集合中第i小的元素(建集合排序后第i位 当然算法可以不排序) 中位数:集合中的中点元素 下中位数 上中位数 9.1最大值和最小值 单独的max或min每个都要扫一遍 n-1次比较 如果同时找max和min 要 :1.2个数相互比较 1次{每次选出2个 选n//2次} 2.大的和max比较 3.小的和min比较 找出序列为第i小的数Θ(n) 随机快速排序的运用:(可以回去看快排) 代码: import random def PARTTION(A,p,r): x = A[r] i…