Transformer模型原理概述】的更多相关文章

1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1 概述 在介绍Transformer模型之前,先来回顾Encoder-Decoder中的Attention.其实质上就是Encoder中隐层输出的加权和,公式如下: 将Attention机制从Encoder-Decoder框架中抽出,进一步抽象化,其本质上如下图 (图片来源:张俊林博客): 以机器翻译为例,我们可以将图中的Key,Value看作是source中的数据,这里的Key和Value是对应的.将图中的Query看作是target中的数据.计算Attention的整个流程大致如下: 1)…
Transformer模型由<Attention is All You Need>提出,有一个完整的Encoder-Decoder框架,其主要由attention(注意力)机制构成.论文地址:https://arxiv.org/abs/1706.03762. 其整体结构如图所示: 模型分为编码器(Encoder)和解码器(Decoder)两部分,包含内部结构的总体结构如下图所示: 图二 在论文中编码器部分由6个相同编码器叠在一起,解码器部分也是由6个相同解码器叠在一起,编码器之间不共享参数.(…
Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行. 它是由编码组件.解码组件和它们之间的连接组成. 编码组件部分由一堆编码器(6个 encoder)构成.解码组件部分也是由相同数量(与编码器对应)的解码器(decoder)组成的. 所有的编码器在结构上都是相同的,但它们没有共享参数.每个解码器都可以分解成两个子层. BERT大火却不懂Transformer?读这一篇就够了 大数据文摘 1月8日 大数据文摘与百度NLP联合出品 编译:张驰…
nvGRAPH原理概述 nvGRAPH的API参考分析. 简介 数据分析是高性能计算的不断增长的应用.许多高级数据分析问题可以称为图形问题.反过来,当今许多常见的图形问题也可以称为稀疏线性代数.这是NVIDIACUDA8.0中新增的nvGRAPH的动机,该功能利用GPU的线性代数功能来处理最大的图形分析和大数据分析问题. 此版本提供了图形构造和操作原语,以及针对GPU优化的一组有用的图形算法.核心功能是SPMV(稀疏矩阵矢量乘积),该模型使用半环模型并针对任何稀疏模式自动进行负载平衡.有关半环及…
2013年----word Embedding 2017年----Transformer 2018年----ELMo.Transformer-decoder.GPT-1.BERT 2019年----Transformer-XL.XLNet.GPT-2 2020年----GPT-3 Transformer 谷歌提出的Transformer模型,用全Attention的结构代替的LSTM,在翻译上取得了更好的成绩.这里基于Attention Is All You Need,对 Transformer…
本篇文章主要教大家如何搭建一个基于Transformer的简单预测模型,并将其用于股票价格预测当中.原代码在文末进行获取.小熊猫的python第二世界 1.Transformer模型 Transformer 是 Google 的团队在 2017 年提出的一种 NLP 经典模型,现在比较火热的 Bert 也是基于 Transformer.Transformer 模型使用了 Self-Attention 机制,不采用 RNN 的顺序结构,使得模型可以并行化训练,而且能够拥有全局信息.这篇文章的目的主…
word2vec是Google在2013年开源的一款将词表征为实数值向量的高效工具. gensim包提供了word2vec的python接口. word2vec采用了CBOW(Continuous Bag-Of-Words,连续词袋模型)和Skip-Gram两种模型. 模型原理 语言模型的基本功能是判断一句话是否是自然语言, 从概率的角度来说就是计算一句话是自然语言的概率. 直观地讲"natural language"这个词组出现的概率要比"natural warship&q…
linux软中断与硬中断实现原理概述. 1.软中断通过open_softirq注册一个软中断处理函数,即在软中断向量表softirq_vec数组中添加新的软中断处理action函数. 2.调用raised_softirq软中断触发函数,即把软中断标记为挂起状态. 内核会在一些位置检查是否有挂起状态的软中断,如果有的话会调用do_softirq函数来执行软中断处理函数. 3.do_softirq函数做的一个重要的工作是切换到软中断请求栈.切换到软中断请求栈就代表了此时已经处于了软中断上下文中了.…
Select模型原理利用select函数,判断套接字上是否存在数据,或者能否向一个套接字写入数据.目的是防止应用程序在套接字处于锁定模式时,调用recv(或send)从没有数据的套接字上接收数据,被迫进入阻塞状态. select参数和返回值意义如下:int select ( IN int nfds, //0,无意义 IN OUT fd_set* readfds, //检查可读性 IN OUT fd_set* writefds, //检查可写性 IN OUT fd_set* exceptfds,…