Using SMOTEBoost and RUSBoost to deal with class imbalance from:https://aitopics.org/doc/news:1B9F7A99/ Binary classification with strong class imbalance can be found in many real-world classification problems. From trying to predict events such as n…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 准备:图像转数组,数组转图像 将RGB图像转换为一维数组的代码如下: # 图像二维像素转换为一维 img = cv2.imread(filename=img_path) data = img.reshape((-1, 3)) data = np.float32(data) print(img.shape…
Self-paced Clustering Ensemble自步聚类集成论文笔记 2019-06-23 22:20:40 zpainter 阅读数 174  收藏 更多 分类专栏: 论文   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/zpainter/article/details/93378052 文章目录 0.摘要 1.introduction 2.Related Work 2.…
多视图子空间聚类/表示学习(Multi-view Subspace Clustering/Representation Learning) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 这篇博文主要对四篇文章(1)"Low-Rank Tensor Constrained Multiview Subspace Clustering"(2015 ICCV),(2)"Tensorized Multi-view Subspace Re…
GMM参考这篇文章:Link 简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 cluster 的概率,又称作 soft assignment . 通常单个点的概率都很小,许多很小的数字相乘起来在计算机里很容易造成浮点数下溢,因此我们通常会对其取对数,把乘积变成加和 ,得到 log-likelihood function . 因此也有和 K-means 同样的问题──并不能保证总是能取到全局最优,…
K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法.包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法. 1. K-Means原理初探 K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇.让簇内的点尽量紧密的连在一…
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗.动物植物.目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别.数据分析.图像处理.市场研究.客户分割.Web文档分类等. 聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大.即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离.一个好的聚类方法将产生如下的聚类 :1).最大化…
目录 K-Means聚类算法 一.K-Means聚类算法学习目标 二.K-Means聚类算法详解 2.1 K-Means聚类算法原理 2.2 K-Means聚类算法和KNN 三.传统的K-Means聚类算法流程 3.1 输入 3.2 输出 3.3 流程 四.K-Means初始化优化之K-Means++ 五.K-Means距离计算优化之elkan K-Means 六.大数据优化之Mini Batch K-Means 七.K-Means聚类算法优缺点 7.1 优点 7.2 缺点 八.小结 更新.更全…
聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性,同一性(与自身距离为0),对称性,直递性(三角不等式).包括欧式距离(二范数),曼哈顿距离(一范数)等等. 1.KNN k近邻(KNN)是一种基本分类与回归方法. 其思路如下:给一个训练数据集和一个新的实例,在训练数据集中找出与这个新实例最近的k  个训练实例,然后统计最近的k  个训练实例中所属类…
K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Cluster Analysis)方法.聚类就是将数据对象分组成为多个类或者簇 (Cluster),使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大. 划分(Partitioning):聚类可以基于划分,也可以基于分层.划分即将对象划分成不同的簇,而分层是将对象分等级. 排他(Exclu…
类别不平衡就是指分类任务中不同类别的训练样例数目差别很大的情况 常用的做法有三种,分别是1.欠采样, 2.过采样, 3.阈值移动 由于这几天做的project的target为正值的概率不到4%,且数据量足够大,所以我采用了欠采样: 欠采样,即去除一些反例使得正.反例数目接近,然后再进行学习,基本的算法如下: def undersampling(train, desired_apriori): # Get the indices per target value idx_0 = train[tra…
Clustering 聚类K-means 聚类是机器学习和数据挖掘领域的主要研究方向之一,它是一种无监督学习算法,小编研究生时期的主要研究方向是“数据流自适应聚类算法”,所以对聚类算法有比较深刻的理解,于是决定开一个专题来写聚类算法,希望可以为入门及研究聚类相关算法的读者带来帮助.聚类可以作为一个单独的任务,用于寻找数据内在分布结构,也经常作为其他学习任务的前驱过程,应用十分广泛.今天,小编就带你探索聚类算法的奥秘,并介绍第一个聚类算法Kmeans. Q:什么是聚类? A:聚类是按照某一种特定的…
CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL) PointASNL: Robust Point Clouds Processing Using Nonlocal Neural Networks With Adaptive Sampling 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/html/Yan_PointASNL_Robust_Point_Clouds_Processing_Using_No…
https://www.weixin765.com/doc/gmlxlfqf.html 在对不平衡的分类数据集进行建模时,机器学**算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性那么,这种结果是为何发生的呢?到底是什么因素影响了这些算法的表现? 在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测因此,机器学**算法常常被要求应用在平衡数据集上那我们该如何处理不平衡数据集?本文会介绍一些相关方法,它们并不复杂只是技巧性比较强 本文会介绍处理非…
R语言中样本平衡的几种方法 在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性.在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测.因此,机器学习算法常常被要求应用在平衡数据集上.不平衡分类是一种有监督学习,但它处理的对象中有一个类所占的比例远远大于其余类.比起多分类,这一问题在二分类中更为常见.不平衡一词指代数据中响应变量(被解释变量)的分布不均衡,如果一个数据集的响应变量在不同类上的分布差别较大我们…
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Error, 相对误差和) MSE(Mean Squared Error, 均方误差) RMSE(Root Mean Squared Error, 均方根误差) RRSE(Root Relative Squared Error, 相对平方根误差) MAE(Mean Absolute Error, 平均绝…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
这是Hinton的第10课 这节课有两篇论文可以作为背景或者课外读物<Adaptive mixtures of local experts>和<Improving neural networks by preventing co-adaptation of feature detectors>. 一.为什么模型的结合是有帮助的 这部分将介绍为什么当我们进行预测的时候,想要将许多模型结合起来.如果我们只有一个模型,我们不得不对这个模型选择某些能力:如果我们选择的能力太少,那么模型可以…
书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈哈. 当然了,我觉得Spark上面的实践其实是非常棒的.有另一个系列文章讨论了Spark. 还有另一篇读书笔记(Link)是关于<机器学习实战>.实战经验也很重要. P1 一般用模型指全局性结果(例如决策树),用模式指局部性结果(例如一条规则). P3 如果预测的是离散值,那就是分类-classi…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
转自: [基础]常用的机器学习&数据挖掘知识点 Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最大似然估计),QP(Quadratic Programming 二次规划), CP(Conditional Probability条件概率),JP(Joint Probability 联合概…
继上两篇文章介绍聚类中基于划分思想的k-means算法和k-mediod算法 本文将继续介绍另外一种基于划分思想的k-mediod算法-----clara算法 clara算法可以说是对k-mediod算法的一种改进,就如同k-mediod算法对k-means算法的改进一样. clara(clustering large application)算法是应用于大规模数据的聚类.而其核心算法还是利用k-mediod算法. 只是这种算法弥补了k-mediod算法只能应用于小规模数据的缺陷. clara算…
Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最大似然估计),QP(Quadratic Programming 二次规划), CP(Conditional Probability条件概率),JP(Joint Probability 联合概率),MP(Marginal Probabili…
本系列意在长期连载分享,内容上可能也会有所删改: 因此如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/(暂时公式显示有问题) 其他:建设中- 当我们在谈论kmeans:总结 概述 通过前面阅读K-means相关论文,大致能梳理出K-means算法发展过程中的一些轨迹.由于本人所阅读的仅仅是一部分,因此还会有更多的方面,欢迎大家补充(补充时请给出具体例子). K-means算法的提出 对K-means算法的性质进行分析的文章相继发…
    本系列意在长期连载分享,内容上可能也会有所删改: 因此如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/(暂时公式显示有问题) 其他:建设中- 当我们在谈论kmeans:论文概述(2) 算法历程 2001年 在Estlick, Mike, et al. "Algorithmic transformations in the implementation of K- means clustering on reconfigu…
本文转载自:http://www.huaxiaozhuan.com/ 这是一份机器学习算法和技能的学习手册,可以作为学习工作的参考,都看一遍应该能收获满满吧. 作者华校专,曾任阿里巴巴资深算法工程师,现任智易科技首席算法研究员,<Python 大战机器学习>的作者. 这是作者多年以来学习总结的笔记,经整理之后开源于世.目前还有约一半的内容在陆续整理中,已经整理好的内容放置在此. 曾有出版社约稿,但是考虑到出版时间周期较长,而且书本购买成本高不利于技术广泛传播,因此作者采取开源的形式. 笔记内容…
tensorflow集成和实现了各种机器学习基础的算法,可以直接调用. 代码集:https://github.com/ageron/handson-ml 监督学习 1)决策树(Decision Tree)和随机森林 决策树: 决策树是一种树形结构,为人们提供决策依据,决策树可以用来回答yes和no问题,它通过树形结构将各种情况组合都表示出来,每个分支表示一次选择(选择yes还是no),直到所有选择都进行完毕,最终给出正确答案. 决策树(decision tree)是一个树结构(可以是二叉树或非二…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…
Basis(基础): MSE(Mean Square Error 均方误差), LMS(LeastMean Square 最小均方), LSM(Least Square Methods 最小二乘法), MLE(MaximumLikelihood Estimation最大似然估计), QP(Quadratic Programming 二次规划), CP(Conditional Probability条件概率), JP(Joint Probability 联合概率), MP(Marginal Pro…