基于Doc2vec训练句子向量】的更多相关文章

目录 一.Doc2vec原理 二.代码实现 三.总结   一.Doc2vec原理 前文总结了Word2vec训练词向量的细节,讲解了一个词是如何通过word2vec模型训练出唯一的向量来表示的.那接着可能就会想到,有没有什么办法能够将一个句子甚至一篇短文也用一个向量来表示呢?答案是肯定有的,构建一个句子向量有很多种方法,今天我们接着word2vec来介绍下Doc2vc,看下Doc2vec是怎么训练一个句子向量的. 许多机器学习算法需要的输入是一个固定长度的向量,当涉及到短文时,最常用的固定长度的…
转自:http://www.tensorflownews.com/2018/04/19/word2vec2/ 一.基于Hierarchical Softmax的word2vec模型的缺点 上篇说了Hierarchical Softmax ,使用霍夫曼树结构代替了传统的神经网络,可以提高模型训练的效率.但是如果基于Hierarchical Softmax的模型中所以词的位置是基于词频放置的霍夫曼树结构,词频越高的词在离根节点越近的叶子节点,词频越低的词在离根节点越远的叶子节点.也就是说当该模型在训…
转自:https://blog.csdn.net/fendouaini/article/details/79905328 1.回顾DNN训练词向量 上次说到了通过DNN模型训练词获得词向量,这次来讲解下如何用word2vec训练词获取词向量. 回顾下之前所说的DNN训练词向量的模型: DNN模型中我们使用CBOW或者Skip-gram模式结合随机梯度下降,这样每次都只是取训练样本中几个词训练,每完成一次训练就反向传播更新一下神经网络中W和W’. 我们发现其中DNN模型仍存在两个缺点: 首先,每次…
1. 引言 上一篇介绍了如何用无监督方法来训练sentence embedding,本文将介绍如何利用监督学习训练句子编码器从而获取sentence embedding,包括利用释义数据库PPDB.自然语言推理数据SNLI.以及综合利用监督训练数据和无监督训练数据. 2. 基于释义数据库PPDB 2015发表的论文Towards universal paraphrastic sentence embeddings提出使用PPDB(the Paraphrase Database)来学习通用的sen…
NLP中的Word2Vec讲解 word2vec是Google开源的一款用于词向量计算 的工具,可以很好的度量词与词之间的相似性: word2vec建模是指用CBoW模型或Skip-gram模型来计算不同 词语的向量(word vector) CBoW是给定上下文来预测输入词.Skip-gram给定输入词预测上下文,但最终都会得到词向量矩阵W 上图为词向量的部分可视化结构 Statistical Language Model (统计语言模型)  在深入word2vec之前,首先回顾下nlp中的一…
Transformer 目录 Transformer 1.理论 1.1 Model Structure 1.2 Multi-Head Attention & Scaled Dot-Product Attention 2.实验 2.1 束搜索 2.2 Issue 1.理论 1.1 Model Structure 1.2 Multi-Head Attention & Scaled Dot-Product Attention 2.实验 2.1 束搜索 束搜索过程示意图: 2.2 Issue 贪婪…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
转自:https://blog.csdn.net/fendouaini/article/details/79821852 1 词向量 在NLP里,最细的粒度是词语,由词语再组成句子,段落,文章.所以处理NLP问题时,怎么合理的表示词语就成了NLP领域中最先需要解决的问题. 因为语言模型的输入词语必须是数值化的,所以必须想到一种方式将字符串形式的输入词语转变成数值型.由此,人们想到了用一个向量来表示词组.在很久以前,人们常用one-hot对词组进行编码,这种编码的特点是,对于用来表示每个词组的向量…
原文地址:https://www.jianshu.com/p/ca2272addeb0 (四)GloVe GloVe本质是加权最小二乘回归模型,引入了共现概率矩阵. 1.基本思想 GloVe模型的目标就是获取每个词的向量表示\(w\).GloVe认为,\(w_i\).\(w_j\).\(w_k\)通过某种函数\(F\)的作用后呈现出来的规律和\(Ratio_{i,j,k}\)具有一致性,或者说相等,这样子也就可以认为词向量中包含了共现概率矩阵中的信息. 2.模型推导 3.word2vec vs…
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/peghoty/p/3857839.html 2.刘建平:word2vec原理:https://www.cnblogs.com/pinard/p/7160330.html 3.吴恩达:<序列模型:自然语言处理与词嵌入> 理论看完了就要实战了,通过实战能加深对word2vec的理解.目前用word2vec算法…