转载自:http://blog.csdn.net/wo334499/article/details/51689549 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销 无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化. GC的性能开销 频繁的创建和销毁对象, 势必会增加GC   import org.apache.spark.sql.SQLContext import o…
What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are just getting started with Apache Spark, the 2.0 release is the one to start with as the APIs have just gone through a major overhaul to improve ease-of-…
spark中RDD.DataFrame.DataSet都是spark的数据集合抽象,RDD针对的是一个个对象,但是DF与DS中针对的是一个个Row RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销 无论是集群间的通信,还是IO操作都需要对对象的结构和数据进行序列化和反序列化 GC的性能开销,频繁的创建和销毁对象,势必会增加GC开销 DataFrameDataFrame引入了schema和off-hea…
package com.example.demo; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import…
RDD.DataFrame.DataSet的区别和联系 共性: 1)都是spark中得弹性分布式数据集,轻量级 2)都是惰性机制,延迟计算 3)根据内存情况,自动缓存,加快计算速度 4)都有partition分区概念 5)众多相同得算子:map flatmap 等等 区别: 1)RDD不支持SQL 2)DF每一行都是Row类型,不能直接访问字段,必须解析才行 3)DS每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获 得每一行的信息 4)DataFrame与Datase…
总结: 1.RDD是一个Java对象的集合.RDD的优点是更面向对象,代码更容易理解.但在需要在集群中传输数据时需要为每个对象保留数据及结构信息,这会导致数据的冗余,同时这会导致大量的GC. 2.DataFrame是在1.3引入的,它包含数据与schema2部分信息,其中数据就是真正的数据,而不是一个java对象.它不容易理解,同时对java支持不好,还有一个缺点是非强类型,这会导致部分错误在运行时才会发现.优点是数据不需要加载到一个java对象,减少GC,大大优化了数据在集群间传播与本地序列化…
Spark最吸引开发者的就是简单易用.跨语言(Scala, Java, Python, and R)的API. 本文主要讲解Apache Spark 2.0中RDD,DataFrame和Dataset三种API:它们各自适合的使用场景:它们的性能和优化:列举使用DataFrame和DataSet代替RDD的场景.本文聚焦DataFrame和Dataset,因为这是Apache Spark 2.0的API统一的重点. Apache Spark 2.0统一API的主要动机是:简化Spark.通过减少…
该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 先来看下官网对RDD.DataSet.DataFrame的解释: 1.RDD Resilient distributed dataset(RDD),which is a fault-tolerant collection of elements that can be operated on in parallel RDD——弹性分布式数据集,分布在集群的各个结点上具有容错性…
该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 该篇主要介绍DataSet与DataFrame. 一.生成DataFrame 1.1.通过case class构造DataFrame package com.personal.test import org.apache.spark.sql.{Encoder, Encoders, SparkSession} object DataFrameTest { case class…
引言 Apache Spark 2.2 以及以上版本提供的三种 API - RDD.DataFrame 和 Dataset,它们都可以实现很多相同的数据处理,它们之间的性能差异如何,在什么情况下该选用哪一种呢? RDD 从一开始 RDD 就是 Spark 提供的面向用户的主要 API.从根本上来说,一个 RDD 就是你的数据的一个不可变的分布式元素集合,在集群中跨节点分布,可以通过若干提供了转换和处理的底层 API 进行并行处理. 在正常情况下都不推荐使用 RDD 算子 在某种抽象层面来说,使用…