Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks NIPS 2015  摘要:本文提出一种 generative parametric model 能够产生高质量自然图像.我们的方法利用 Laplacian pyramid framework 的框架,从粗到细的方式,利用 CNN 的级联来产生图像.在金字塔的每一层,都用一个 GAN,我们的方法可以产生更高分辨率的图像.    引言:在计算…
论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Pruning by learning only the important connections. all connections with weights below a threshold are removed from the network. retrain the network to learn the…
Generative Adversarial Nets NIPS 2014  摘要:本文通过对抗过程,提出了一种新的框架来预测产生式模型,我们同时训练两个模型:一个产生式模型 G,该模型可以抓住数据分布:还有一个判别式模型 D 可以预测来自训练样本 而不是 G 的样本的概率.训练 G 的目的是让 D 尽可能的犯错误,让其无法判断一个图像是产生的,还是来自训练样本.这个框架对应了一个 minimax two-player game. 也就是,一方得势,必然对应另一方失势,不存在两方共赢的局面,这个…
Generative Adversarial Text to Image Synthesis ICML 2016  摘要:本文将文本和图像练习起来,根据文本生成图像,结合 CNN 和 GAN 来有效的进行无监督学习. Attribute Representation: 是一个非常具有意思的方向.由图像到文本,可以看做是一个识别问题:从文本到图像,则不是那么简单. 因为需要解决这两个小问题: 1. learning a text feature representation that captur…
这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不同场景下的角度.背景亮度等等因素的差异,同一个人的图像变化非常大,因而不能使用一般的图像分类的方法.论文采用了一种相似性度量的方法来促使神经网络学习出图像的特征,并根据特征向量的欧式距离来确定相似性.除此之外,论文通过对网络的训练过程进行分析,提出了一种计算效率更高的模型训练方法. 论文方法 相似性…
之前提到,深度神经网络在训练中容易遇到梯度消失/爆炸的问题,这个问题产生的根源详见之前的读书笔记.在 Batch Normalization 中,我们将输入数据由激活函数的收敛区调整到梯度较大的区域,在一定程度上缓解了这种问题.不过,当网络的层数急剧增加时,BP 算法中导数的累乘效应还是很容易让梯度慢慢减小直至消失.这篇文章中介绍的深度残差 (Deep Residual) 学习网络可以说根治了这种问题.下面我按照自己的理解浅浅地水一下 Deep Residual Learning 的基本思想,并…
Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主要创新是在将注意机制引入到目标跟踪 摘要:源自认知神经科学地视觉注意促进人类对相关的内容的感知.近些年大量工作将注意机制引入到计算机视觉系统中.对于视觉跟踪来说,面临的最大问题在于目标外表的大尺度变化.自注图通过选择性关注临时的鲁棒特征提升视觉跟踪的性能.当前的一些检测跟踪算法主要使用额外的自注模型…
Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识别结构,该结构由两个特征提取器产生,两个输出是图像每一个位置的外积(outer product),然后进行 pool,得到最终的图像描述算子.这种结构可以对局部 pairwise feature interactions 以平移不变的方式进行建模.而且,可以产生不同的无序的文字描述,像 Fisher…
Deep Boltzmann Machines是hinton的学生写的,是在RBM基础上新提出的模型,首先看一下RBM与BM的区别 很明显可以看出BM是在隐含层各个节点以及输入层各个节点都是相互关联的,但是RBM只是两层之间的节点互相关联. 而DBM其实就是多层的RBM,类似于DBN,RBM是拥有一个hidden层,而DBM拥有多个hidden层 如上图是一个三层的DBM,十分类似于DBN,但是他的隐层是互相可以传递的,而DBN的几个隐层是不能够互相传递的,是单向的. 关于DBM,使用最大似然估…
1. 摘要 为解决姿态变化的问题,作者提出Pose-driven-deep convolutional model(PDC),结合了global feature跟local feature, 而local feature 还用一个feature weight network(FWN) 进行重要性程度度量,在常用reid数据集 CUHK03 .Market1501.viper 上面取到了非常好的效果. 2. 介绍 这个PDC模型有两个比较重要的子网络:FEN FWN:最后整合global feat…