首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
促销R语言应用性能
】的更多相关文章
促销R语言应用性能
1. 绩效评估 时间的确定 R测量时间是在最简单的方式提供是system.time性能. system.time(expr, gcFirst=TRUE) 这个函数会在不减少程序执行性能的情况下,执行表达式expr,gcFrist则是指定程序执行前是否先执行垃圾回收. do.stuff <- function(){ a <- 1:100000 for(i in 1:100000){ a[i] <- a[i]^2 } a } system.time(do.stuff()) 监控内…
R语言编程艺术(5)R语言编程进阶
本文对应<R语言编程艺术> 第14章:性能提升:速度和内存: 第15章:R与其他语言的接口: 第16章:R语言并行计算 ========================================================================= 性能提升:速度和内存 要使R代码运行速度更快,有以下建议: 通过向量化的方式优化.使用字节码编译等: 将代码中最消耗CPU的核心部分用编译型语言编写,如C或C++: 将代码用某种并行的方式编写. 消除显示循环: 采用向量化提升速度…
R语言︱ROC曲线——分类器的性能表现评价
笔者寄语:分类器算法最后都会有一个预测精度,而预测精度都会写一个混淆矩阵,所有的训练数据都会落入这个矩阵中,而对角线上的数字代表了预测正确的数目,即True Positive+True Nagetive. -------------------------- 相关内容: 1. R语言︱ROC曲线--分类器的性能表现评价 2.机器学习中的过拟合问题 3.R语言︱机器学习模型评估方案(以随机森林算法为例) -------------------------- 1.TPR与TNR 同时可以相应算出TP…
【机器学习与R语言】13- 如何提高模型的性能?
目录 1.调整模型参数来提高性能 1.1 创建简单的调整模型 2.2 定制调整参数 2.使用元学习来提高性能 2.1 集成学习(元学习)概述 2.2 bagging 2.3 boosting 2.4 随机森林 1)训练随机森林 2)评估随机森林性能 1.调整模型参数来提高性能 参数调整:调节模型合适的选项的过程,如股票C5.0决策树模型中的trials参数,神经网络中的调节节点.隐层数目,SVM中的核函数等等. caret包自动调整参数:train函数,为分类和回归的150种不同机器学习模型自动…
【机器学习与R语言】12- 如何评估模型的性能?
目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化(ROC曲线) 2.评估未来的性能 2.1 保持法 2.2 交叉验证 2.3 自助法抽样 1.评估分类方法的性能 拥有能够度量实用性而不是原始准确度的模型性能评价方法是至关重要的. 3种数据类型评价分类器:真实的分类值:预测的分类值:预测的估计概率.之前的分类算法案例只用了前2种. 对于单一预测类别,可将predict函数设定为…
R语言学习笔记(二十一五):如何如何提升R语言运算的性能以及速度
在R中获得快速运行代码的方法 使用向量化运算 R语言的并行计算可以用parallel和foreach包 加快R运行速度还可以使用cmpfun()函数即字节码编译器 再者就是在R中调用C或C++ 同时还可以利用Rprof()来寻找代码的瓶颈 利用分块或者R包来管理内存…
R语言:用简单的文本处理方法优化我们的读书体验
博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html 前言 延续之前的用R语言读琅琊榜小说,继续讲一下利用R语言做一些简单的文本处理.分词的事情.其实就是继续讲一下用R语言读书的事情啦,讲讲怎么用它里面简单的文本处理方法,来优化我们的读书体验,如果读邮件和读代码也算阅读的话..用的代码超级简单,不涉及其他包 这里讲两个示例,结尾再来吐槽和总结. 1)R-Blogger订阅邮件拆分 2) R代码库快速阅读方法 不在博客园上阅读时才会看到的,这篇博文…
微软的R语言发行版本MRO及开发工具RTVS
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:微软在收购R语言的开发商后,也独立发行或在自己的产品中集成了R语言,这里就介绍下它们包括开发工具RTVS. R是世界上最强大的统计计算.机器学习和图形化语言/平台,同时伴有一个众多用户.开发者和贡献者的全球化社区.R在我之前从事的环境分析领域也被广泛使用,据朋友说一个从环境专业毕业的博士就因为R用得熟还成功进入Facebook成为数据科学家. 众所周知,微软去年初收购了R语言的开发商Revol…
[R语言]R语言使用多线程对数据库进行大批量访问时出现无法连接问题
问题描述: 在R中使用多线程对数据库进行写入,在服务器端运行脚本(linux环境),总是在第6-7万个任务线程时,出现无法连接到数据库的问题.任务中断,错误信息为task 6xxxx failed,Can't connect to database. 而远程端在windows环境下执行时,却没有问题. 问题出现了很久,只所以动不起念头去解决,是隐约觉得问题出现在R语言工具包或linux操作系统底层的问题. 这两者都不是我能handle的领域.即使花了极大精力去定位问题,定位到了我也未必能解决.…
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概…