UVa 884 - Factorial Factors】的更多相关文章

题目:输出n!中素数因数的个数. 分析:数论.这里使用欧拉筛法计算素数,在计算过程中求解就可以. 传统筛法是利用每一个素数,筛掉自己的整数倍: 欧拉筛法是利用当前计算出的全部素数,乘以当前数字筛数: 所以每一个前驱的素椅子个数一定比当前数的素因子个数少一个. 说明:重新用了"线性筛法". #include <algorithm> #include <iostream> #include <cstdlib> #include <cstring&g…
 Krypton Factor  You have been employed by the organisers of a Super Krypton Factor Contest in which contestants have very high mental and physical abilities. In one section of the contest the contestants are tested on their ability to recall a seque…
称号:发现没有比给定数量少n的.只要2,3一个因素的数字组成. 分析:数论.贪婪,分而治之. 用两个三分球,分别代表乘法2,和繁殖3队列,队列产生的数字,原来{1}. 然后.每取两个指针相应元素*2和*3的值中最小的即为未找到的数字中最小的: 注意,可能生成反复数据.不要存进去(反复数据.一定连续产生). 说明:打表计算.二分查询输出就可以. #include <iostream> #include <cstdlib> #include <cstdio> using n…
题目大意:给一个数n,统计n的阶乘中各个数字出现的次数.用java的大数做. import java.io.*; import java.util.*; import java.math.*; class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger[] fact = new BigInteger[370]; fact[0] = BigInteger.…
问题 G: Factors of Factorial 时间限制: 1 Sec  内存限制: 128 MB提交: 57  解决: 33[提交][状态][讨论版][命题人:admin] 题目描述 You are given an integer N. Find the number of the positive divisors of N!, modulo 109+7. Constraints1≤N≤103 输入 The input is given from Standard Input in…
 Factors and Factorials  The factorial of a number N (written N!) is defined as the product of all the integers from 1 to N. It is often defined recursively as follows: Factorials grow very rapidly--5! = 120, 10! = 3,628,800. One way of specifying su…
Time limit 3000 ms OS Linux Write a program, that computes the number of different prime factors in a positive integer.InputThe input tests will consist of a series of positive integers. Each number is on a line on its own. Themaximum value is 100000…
Problem Statement You are given an integer N. Find the number of the positive divisors of N!, modulo 10^9+7. Constraints 1≤N≤10^3 Input The input is given from Standard Input in the following format: N Output Print the number of the positive divisors…
https://vjudge.net/problem/UVA-1575 题意: 令f(k)=n 表示 有n种方式,可以把正整数k表示成几个数的乘积的形式. 例 10=2*5=5*2,所以f(10)=2 给出n,求最小的k 搜索 从最小的质数开始枚举选几个 假设前i-1个种质数用了k个,有sum种方案,第i种质数选a个, 那么前i种质数的方案就有sum*C[k+a][a] 可以理解原来有k个位置,又加了a个位置,有a个数可以放在任意位置 所以前i种的每一种方案都变成C[k+a][a]种 枚举每个质…
Problem Statement You are given an integer N. Find the number of the positive divisors of N!, modulo 109+7. Constraints 1≤N≤103 Input The input is given from Standard Input in the following format: N Output Print the number of the positive divisors o…