将数据存储在Amazon S3中可带来很多好处,包括规模.可靠性.成本效率等方面.最重要的是,你可以利用Amazon EMR中的Apache Spark,Hive和Presto之类的开源工具来处理和分析数据. 尽管这些工具功能强大,但是在处理需要进行增量数据处理以及记录级别插入,更新和删除场景时,仍然非常具有挑战. 与客户交谈时,我们发现有些场景需要处理对单条记录的增量更新,例如: 遵守数据隐私法规,在该法规中,用户选择忘记或更改应用程序对数据使用方式的协议. 使用流数据,当你必须要处理特定的数…
Apache Hudi在阿里巴巴集团.EMIS Health,LinkNovate,Tathastu.AI,腾讯,Uber内使用,并且由Amazon AWS EMR和Google云平台支持,最近Amazon Athena支持了在Amazon S3上查询Apache Hudi数据集的能力,本博客将测试Athena查询S3上Hudi格式数据集. 1. 准备-Spark环境,S3 Bucket 需要使用Spark写入Hudi数据,登陆Amazon EMR并启动spark-shell: $ export…
1. 引入 Hudi 0.6.0版本之前只支持将Hudi表同步到Hive或者兼容Hive的MetaStore中,对于云上其他使用与Hive不同SQL语法MetaStore则无法支持,为解决这个问题,近期社区对原先的同步模块hudi-hive-sync进行了抽象改造,以支持将Hudi表同步到其他类型MetaStore中,如阿里云的数据湖分析DLA(https://www.aliyun.com/product/datalakeanalytics中. 2. 抽象 将Hudi表同步至Hive MetaS…
1. 概述 在nClouds上,当客户的业务决策取决于对近实时数据的访问时,客户通常会向我们寻求有关数据和分析平台的解决方案.但随着每天创建和收集的数据量都在增加,这使得使用传统技术进行数据分析成为一项艰巨的任务. 本文我们将讨论nClouds如何帮助您应对数据延迟,数据质量,系统可靠性和数据隐私合规性方面的挑战. Amazon EMR上的Apache Hudi是需要构建增量数据管道.大规模近实时处理数据的理想解决方案.本篇文章将在Amazon EMR的Apache Hudi上进行原型验证. n…
1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规模数据分析应用程序.Amazon EMR自动管理这些框架的配置和扩缩容,并通过优化的运行时提供更高性能,并支持各种Amazon Elastic Compute Cloud(Amazon EC2)实例类型和Amazon Elastic Kubernetes Service(Amazon EKS)集群.…
1. 介绍 Apache Hudi是一个开源的数据湖框架,旨在简化增量数据处理和数据管道开发.借助Hudi可以在Amazon S3.Aliyun OSS数据湖中进行记录级别管理插入/更新/删除.AWS EMR集群已支持Hudi组件,并且可以与AWS Glue Data Catalog无缝集成.此特性可使得直接在Athena或Redshift Spectrum查询Hudi数据集. 对于企业使用AWS云的一种常见数据流如图1所示,即将数据实时复制到S3. 本篇文章将介绍如何使用Oracle Gold…
是的,最近国内云服务提供商腾讯云在其EMR-V2.2.0版本中优先集成了Hudi 0.5.1版本作为其云上的数据湖解决方案对外提供服务 Apache Hudi 在 HDFS 的数据集上提供了插入更新和增量拉取的流原语. 一般来说,我们会将大量数据存储到 HDFS,新数据增量写入,而旧数据鲜有改动,特别是在经过数据清洗,放入数据仓库的场景.而且在数据仓库如 hive 中,对于 update 的支持非常有限,计算昂贵.另一方面,若是有仅对某段时间内新增数据进行分析的场景,则 hive.presto.…
徐昱 Apache Hudi Contributor:华米高级大数据开发工程师 巨东东 华米大数据开发工程师 1. 应用背景及痛点介绍 华米科技是一家基于云的健康服务提供商,拥有全球领先的智能可穿戴技术.在华米科技,数据建设主要围绕两类数据:设备数据和APP数据,这些数据存在延迟上传.更新频率高且广.可删除等特性,基于这些特性,前期数仓ETL主要采取历史全量+增量模式来每日更新数据.随着业务的持续发展,现有数仓基础架构已经难以较好适应数据量的不断增长,带来的显著问题就是成本的不断增长和产出效率的…
1. 引入 Apache Hudi是一个流行的开源的数据湖框架,Hudi提供的一个非常重要的特性是自动管理文件大小,而不用用户干预.大量的小文件将会导致很差的查询分析性能,因为查询引擎执行查询时需要进行太多次文件的打开/读取/关闭.在流式场景中不断摄取数据,如果不进行处理,会产生很多小文件. 2. 写入时 vs 写入后 一种常见的处理方法先写入很多小文件,然后再合并成大文件以解决由小文件引起的系统扩展性问题,但由于暴露太多小文件可能导致不能保证查询的SLA.实际上对于Hudi表,通过Hudi提供…
作者:李少锋 文章目录: 一.CDC背景介绍 二.CDC数据入湖 三.Hudi核心设计 四.Hudi未来规划 1. CDC背景介绍 首先我们介绍什么是CDC?CDC的全称是Change data Capture,即变更数据捕获,它是数据库领域非常常见的技术,主要用于捕获数据库的一些变更,然后可以把变更数据发送到下游.它的应用比较广,可以做一些数据同步.数据分发和数据采集,还可以做ETL,今天主要分享的也是把DB数据通过CDC的方式ETL到数据湖. 对于CDC,业界主要有两种类型: 基于查询,客户…