Alink漫谈(七) : 如何划分训练数据集和测试数据集 目录 Alink漫谈(七) : 如何划分训练数据集和测试数据集 0x00 摘要 0x01 训练数据集和测试数据集 0x02 Alink示例代码 0x03 批处理 3.1 得到记录数 3.2 随机选取记录 3.2.1 得到总记录数 3.2.2 决定每个task选择记录数 3.2.3 每个task选择记录 3.3 设置训练数据集和测试数据集 0x04 流处理 0x05 参考 0x00 摘要 Alink 是阿里巴巴基于实时计算引擎 Flink…
机器学习策略-不匹配的训练和开发/测试数据 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.4在不同分布上训练和测试数据 在深度学习时代,越来越多的团队使用和开发集/测试集不同分布的数据来训练模型.下面解释一些方法来处理训练集和测试集存在差异的情况. Example1 假设你要开发一个识别猫的机器学习系统,其中 需要识别的是用户手机上传的猫的图片 这些图片往往清晰度低,取景不专业,识别度低.由于用户量少的缘故,这些图片量很少,只有大约1W张.但是从网上可以下载大量清晰度高,取景专业,…
library(randomForest)model.forest<-randomForest(Species~.,data=iris)pre.forest<-predict(model.forest,iris)table(pre.forest,iris$Species) library(rpart)library(randomForest)model.forest<-randomForest(Kyphosis~.,data=kyphosis)pre.forest<-predict…
Alink漫谈(十一) :线性回归 之 L-BFGS优化 目录 Alink漫谈(十一) :线性回归 之 L-BFGS优化 0x00 摘要 0x01 回顾 1.1 优化基本思路 1.2 各类优化方法 0x02 基本概念 2.1 泰勒展开 如何通俗推理? 2.2 牛顿法 2.2.1 泰勒一阶展开 2.2.2 泰勒二阶展开 2.2.3 高维空间 2.2.4 牛顿法基本流程 2.2.5 问题点及解决 2.3 拟牛顿法 2.4 L-BFGS算法 0x03 优化模型 -- L-BFGS算法 3.1 如何分布…
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 1.1.2 求解 1.1.3 随机梯度下降 1.2 LR的并行计算 1.3 传统机器学习 1.4 在线学习 1.5 FTRL 1.5.1 regret & sparsity 1.5.2 FTRL的伪代码 1.5.3 简要理解 0x02 示例代码 0x03 问题 0x04 总体逻辑 0xFF 参考 0…
在实际应用中,一般会选择将数据集划分为训练集(training set).验证集(validation set)和测试集(testing set).其中,训练集用于训练模型,验证集用于调参.算法选择等,而测试集则在最后用于模型的整体性能评估. 1. 留出法 (Hold-out) 将数据集D划分为2个互斥子集,其中一个作为训练集S,另一个作为测试集T,即有: D = S ∪ T, S ∩ T = ∅ 用训练集S训练模型,再用测试集T评估误差,作为泛化误差估计. 特点:单次使用留出法得到的估计结果往…
Alink漫谈(十) :线性回归实现 之 数据预处理 目录 Alink漫谈(十) :线性回归实现 之 数据预处理 0x00 摘要 0x01 概念 1.1 线性回归 1.2 优化模型 1.3 损失函数&目标函数 1.4 最小二乘法 0x02 示例代码 0x03 整体概述 0x04 基础功能 4.1 损失函数 4.1.1 导数和偏导数 4.1.2 方向导数 4.1.3 Hessian矩阵 4.1.4 平方损失函数 in Alink 4.2 目标函数 4.2.1 梯度 4.2.2 梯度下降法 4.2.…
Alink漫谈(十七) :Word2Vec源码分析 之 迭代训练 目录 Alink漫谈(十七) :Word2Vec源码分析 之 迭代训练 0x00 摘要 0x01 前文回顾 1.1 上文总体流程图 1.2 回顾霍夫曼树 1.2.1 变量定义 1.2.2 为何要引入霍夫曼树 0x02 训练 2.1 训练流程 2.2 生成训练模型 2.3 初始化词典&缓冲 2.4 更新模型UpdateModel 2.5 计算更新 2.5.1 sigmoid函数值近似计算 2.5.2 窗口及上下文 2.5.3 训练…
require 'torch' require 'image' local setting = {parent_root = '/home/pxu/image'} function list_children_root(path) ,{},io.popen for file_name in popen('ls -a ' .. path):lines() do i = i + then t[i-] = file_name --if i>0 then --t[i] = file_name end e…
sklearn——train_test_split 随机划分训练集和测试集 sklearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html 一般形式: train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train data和…