RSA遇上中国剩余定理】的更多相关文章

1.Introduction 最近读论文刚好用到了这个,之前只是有耳闻,没有仔细研究过,这里就好好捋一下,会逐步完善 不过貌似CRT(中国剩余定理)的实现更容易被攻击 2. RSA: Overview rsa算法描述如下: 选择两个大素数\(p.q\),计算\(N = p*q\)(最好保证N在2048bit以上,最新的研究工作已经可以成功分解762bit的N) 计算\(\phi(N)=(p-1)*(q-1)\) 选择一个\(e\)使得\(gcd(e, \phi(n)) == 1\),e由于是作加…
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个同余方程合并,具体会在下面提到. 但是,使用仍有限制,那就是\(x\)的系数必须为\(1\). 没关系,把它再扩展一下 题目及实现 洛谷题目传送门 题意分析 显然,如果我们能干掉所有龙,那么每一次使用的剑的攻击力是已知的,设为\(k\).那么对于每一条龙,攻击次数\(x\)必须满足\(kx\equi…
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d|N}C(N,d)}(\mod999911659)\) 乍一看,指数这么大,要怎么处理好呢?上费马小定理. 平时用费马小定理求逆元用多了,\(a^{p-2}\equiv inv(a)(\mod p)\),搞得蒟蒻差点忘了它原本的样子\(a^{p-1}=1(\mod p)\),那原式的指数\(\sum…
1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题:有一正整数ans,对于每一对数,都有:(ans-a[i])mod m[i]=0.求此数最小为多少. 输入样例: - - - - 实现代码: #include <fstream> #include <iostream> #include <algorithm> #includ…
题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小C又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小C只需要让你求出路径数mod P的值. 输入 第一行,四个整数N.M.T.P. 接下来的T行,每行两个整数,表示施工的路口的坐标. 输出 一…
题目大意:略 真是一波三折的一道国赛题,先学了中国剩余定理,勉强看懂了模板然后写的这道题 把取出的宝剑攻击力设为T,可得Ti*x=ai(mod pi),这显然是ax=c(mod b)的形式 这部分用exgcd求解x的最小正整数解 先把a,b,c除以gcd(a,b),如果c不能整除gcd(a,b)那么无解.此时a,b互质,用exgcd求得a的逆元,逆元乘回来gcd(a,b)就是x的最小正整数解,注意可能爆long long要用龟速乘 那么此时求得的x是仅仅对于这一个方程的,我们要把它带到excrt…
Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 121194   Accepted: 38157 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,…
卢卡斯定理(模数较小,且是质数) 式子C(m,n)=C(m/p,n/p)*C(m%p,n%p)%p 至于证明(我也不会QAQ,只要记住公式也该就好了). 同时卢卡斯定理一般用于组合数取模上 1.首先当组合数取得模较大时,我们可以使用卢卡斯,也可以直接求 (只要数据范围不是很大,还能开得起数组,我们可以直接预处理出阶乘,逆元,需要时O(1)求,当然要是质数,不然只能现求). 2.当组合数的模很小时,我们只能用卢卡斯, 我们可以发现假如我们照旧求的话,可能有的阶乘直接被消成0了 这个时候直接用阶乘会…
1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m|(a-b),  则称 a 和 b 模 m 同余, 记为 m 称为这个同余式的模. 定理(中国剩余定理): 设 m1,m2,...,mr 是两两互素的正整数. 设 a1,a2,...,ar 是整数, 则同余方程组 模 M = m1m2...mr 有唯一解 3.C语言源代码 #include<stdio.…
#include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(scanf("%d%d%d%d",&p,&e,&i,&d)) { && e == - && i == - && d== -) break; ,m2 = ,m3 = ; const int M1 = m2*m3, M2…