图论初步-Tarjan算法及其应用】的更多相关文章

暑假刷了一堆Tarjan题到头来还是忘得差不多. 这篇博客权当复习吧. 一些定义 无向图 割顶与桥 (划重点) 图G是连通图,删除一个点表示删除此点以及所有与其相连的边. 若删除某点u后G不再连通,那么u是G的一个割顶(割点). 若删除某边e后G不再连通,那么e是G的一个桥. 双连通 一个图为双连通,意思是说任一点对(u,v),从u到v都有两条路径. 广义双连通有两种:点双连通(狭义的双连通).边双连通. 点双连通:就是这两条路径除了起点和终点外无重复点. 边双连通:就是这两条路径无重复边. 例…
强连通分量 模板(强联通分量个数+缩点) #include<iostream> #include<cstdio> #define MAXn 100000 #define MAXm 2000000 using namespace std; int dfn[MAXn],low[MAXn],head[MAXm],st[MAXn],belong[MAXn]; bool in_st[MAXn]; int ans,n,m,num,s_num,cnt,group_num; struct node…
在有向图中,若两点至少包含一条路径可以到达,则称两个顶点强连通,若任意两个顶点皆如此,则称此图为强联通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 中间查找过程类似于深度优先搜索和并查集. 代码实现: #include <iostream> #include <algorithm> #include <cstring> #include <cstdio> #include <vec…
在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连通分量(strongly connected component). 比如说这个有向图中,点\(1,2,4,5,6,7,8\)和相应边组成的子图就是一个强连通分量,另外点\(3,9\)单独构成强连通分量. Tarjan算法是由Robert Tarjan提出的用于寻找有向图的强连通分量的算法.它可以在…
[原创]tarjan算法初步(强连通子图缩点) tarjan算法的思路不是一般的绕!!(不过既然是求强连通子图这样的回路也就可以稍微原谅了..) 但是研究tarjan之前总得知道强连通分量是什么吧.. 上百度查查: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通…
▎前言 一直都想学习这个东西,以为很难,结果发现也不过如此. 只要会些图论的基础就可以了. ▎强连通 ☞『定义』 既然叫强连通,那么一定具有很强的连通性. 强连通:就是指在一个有向图中,两个顶点可以互相到达,那么我们就称之为强连通: 强连通图:在一个有向图中,任意两个点都可以互相到达,那么我们称这个图是一个强连通图: 强连通分量:在一个有向图中(不一定是强连通图),一定有很多子图是强连通图,特别的,单独的一个点也是强连通图,而强连通分量则是分成的最大的强连通图. 以下三个红框中的都是强连通分量:…
---恢复内容开始--- tarjan算法介绍: 一种由Robert Tarjan提出的求解有向图强连通分量的线性时间的算法.通过变形,其亦可以求解无向图问题 桥: 割点: 连通分量: 适用问题: 求解(有向图/无向图)的,桥,割点,环,回路等问题 整体思想: 如果我们欲要求解,桥的个数,割点的个数,环的数目,归根结底,是分析清楚一个图 有几个 环,每个环包含哪些节点,那些边. 而 tarjan算法就是做的这件事情,通过dfs遍历每一条边和节点,算出有几个环,每个环中有哪些节点.那么是如何做的呢…
所谓割点(顶)割边,我们引进一个概念 割点:删掉它之后(删掉所有跟它相连的边),图必然会分裂成两个或两个以上的子图. 割边(桥):删掉一条边后,图必然会分裂成两个或两个以上的子图,又称桥. 这样大家就应该能简单理解(怎么可能)割点割边了. 所以我们再来看一个图 这样大家就能明白了吧(明白是明白了,但是要他干嘛(自动忽略))到后面会明白的. 然后怎么求,这是一个问题,直接想法是搜索,枚举每一个点,然后再去检验是否联通,这样的复杂度应该是O(n2),很显然很不优秀,万一数据是1e5以上不就凉凉了吗.…
有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在百科上和别的大神的博客中不太一样,暂且采用百科上的定义) Tarjan算法的功能就是求有向图中的强连通分量 思路: 定义DFNi存放访问到i结点的次序(时间戳),Lowi存放i结点及向i下方深搜到的结点中能追溯到的访问次序最小的结点的访问次序(即这些结点回溯上去能找到的最小的DFN值),找到未被访问…
 原题链接   无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 也可以先用Tajan()进行dfs算出所有点 的low和dfn值,并记录dfs过程中每个 点的父节点:然后再把所有点遍历一遍, 看其low和dfn,满足dfn[ fa ]<low[ i ](0<i<=n, i 的 father为fa) —— 则桥为fa-i. 找桥的时候,要注意看有没有重边:有重边,则不是桥. 另外,本题的题意及测试样例中没有重边,所以不用考虑重边. 带详细注释的题解: #include<s…