一.为什么数据会不一致 回顾一下上一篇文章<缓存与数据库一致性之一:缓存更新设计>中对缓存.数据库进行读写操作的流程. 写流程: (1)先淘汰cache (2)再写db 读流程: (1)先读cache,如果数据命中hit则返回 (2)如果数据未命中miss则读db (3)将db中读取出来的数据入缓存 什么情况下可能出现缓存和数据库中数据不一致呢? 在分布式环境下,数据的读写都是并发的,上游有多个应用,通过一个服务的多个部署(为了保证可用性,一定是部署多份的),对同一个数据进行读写,在数据库层面…
工作中,经常会遇到缓存和数据库数据一致性问题.从理论上设置过期时间,是保证最终一致性的解决方案.这种方案下,我们可以对存入缓存的数据设置过期时间,所有的写操作以数据库为准,对缓存操作只是尽最大努力即可.也就是说如果数据库写成功,缓存更新失败,那么只要到达过期时间,则后面的读请求自然会从数据库中读取新值然后回填缓存.因此,接下来讨论的思路不依赖于给缓存设置过期时间这个方案. 在这里,我们讨论三种更新策略: 1) 先更新数据库,再更新缓存 2) 先删除缓存,再更新数据库 3) 先更新数据库,再删除缓…
一般来说,如果允许缓存可以稍微的跟数据库偶尔有不一致的情况,也就是说如果你的系统不是严格要求 “缓存+数据库” 必须保持一致性的话,最好不要做这个方案,即:读请求和写请求串行化,串到一个内存队列里去. 串行化可以保证一定不会出现不一致的情况,但是它也会导致系统的吞吐量大幅度降低,用比正常情况下多几倍的机器去支撑线上的一个请求. Cache Aside Pattern 最经典的缓存+数据库读写的模式,就是 Cache Aside Pattern. 读的时候,先读缓存,缓存没有的话,就读数据库,然后…
一.缓存穿透预防及优化 缓存穿透是指查询一个根本不存在的数据,缓存层和存储层都不会命中,但是出于容错的考虑,如果从存储层查不到数据则不写入缓存层,如图 11-3 所示整个过程分为如下 3 步: 缓存层不命中 存储层不命中,所以不将空结果写回缓存 返回空结果 缓存穿透将导致不存在的数据每次请求都要到存储层去查询,失去了缓存保护后端存储的意义.    图-1:缓存穿透模型 缓存穿透问题可能会使后端存储负载加大,由于很多后端存储不具备高并发性,甚至可能造成后端存储宕掉.通常可以在程序中分别统计总调用数…
将不一致分为三种情况: 1. 数据库有数据,缓存没有数据: 2. 数据库有数据,缓存也有数据,数据不相等: 3. 数据库没有数据,缓存有数据. 在讨论这三种情况之前,先说明一下我使用缓存的策略,也是大多数人使用的策略,叫做 Cache Aside Pattern.简而言之,就是 1. 首先尝试从缓存读取,读到数据则直接返回:如果读不到,就读数据库,并将数据会写到缓存,并返回. 2. 需要更新数据时,先更新数据库,然后把缓存里对应的数据失效掉(删掉). 读的逻辑大家都很容易理解,谈谈更新.如果不采…
背景 缓存是数据库的副本,应用在查询数据时,先从缓存中查询,如果命中直接返回,如果未命中,去数据库查询最新数据并返回,同时写入缓存. 缓存能够有效地加速应用的读写速度,同时也可以降低后端负载.是应用架构中常用的一种技术. 问题 当业务发生时,系统状态改变,需要同时修改数据库和缓存的数据.如何保证应用从缓存读取到最新的数据,且即使数据库立即崩溃,数据也不丢失?这就是缓存与数据库的一致性问题. 分析 一个系统状态同时存在于缓存和数据库,缓存是数据库的副本,数据库可以读和写,把缓存的写看作是读缓存未命…
1.================================================================================================================================ 高并发架构系列:分布式锁的由来.特点及Redis分布式锁的实现详解 2018年12月21日 16:18:49 mikechen优知 阅读数:53 标签: 程序员架构技术互联网IT 更多 个人分类: 高并发架构系列   标题Redis内存回…
mysql增加version字段实现乐观锁,实现高并发下的订单库存的并发控制,通过开启多线程同时处理模拟多个请求同时到达的情况 ============================================================= 完整的代码请到GIthub查看:https://github.com/AngelSXD/swapping 多个线程处理完后再做事情:https://www.cnblogs.com/sxdcgaq8080/p/9456006.html =======…
首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用.在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作. 但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存.又或者是先删除缓存,再更新数据库,其实大家存在很大的争议.目前没有一篇全面的博客,对这几种方案进行解析.于是博主战战兢兢,顶着被大家喷的风险,写了这篇文章. 文章结构 本文由以下三个部分组成 1.讲解缓存更新策略2.对每种策略进行缺点分析3.针对缺点给出改进方案 正文 先做一个说明,从理论上来说,给缓存设…
数据库历险记(三) | 缓存框架的连环炮   文章首发于微信公众号「陈树义」,专注于 Java 技术分享的社区.点击链接扫描二维码,与500位小伙伴一起共同进步.微信公众号二维码 http://p3npq6ecr.bkt.clouddn.com/blog/chenshuyi_gongzhonghao_guide_full.jpg 最近在思考数据库以及缓存的问题,发现这些知识点其实是有一点关联的,于是这篇文章通过一个连环提问的方式将这些知识点串联起来. 问:为什么要用 Memcached.Redi…