简介 工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记噪声数据,而数据的质量决定了最终模型性能的好坏.如果进行人工二次标记,成本会很高,我们希望能使用一种无监督算法帮我们做这件事,异常检测算法可以在一定程度上解决这个问题. 异常检测分为 离群点检测(outlier detection) 以及 奇异值检测(novelty detection) 两种. 离群点检测:适用于训练数据中包含异常值的情况,例如上述所提及的情况.离群点检测…