主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同样的方差,降低相邻像素的相关性. 主成分分析PCA PCA算法可以将输入向量转换为一个维数低很多的近似向量.我们在这里首先用2D的数据进行试验,其数据集可以在UFLDL网站的相应页面http://ufldl.stanford.edu/wiki/index.php/Exercise:PCA_in_2D…
1.JS对象 1.1 JS对象特征 1.JS对象是基本数据数据类型之一,是一种复合值,可以看成若干属性的集合. 属性是名值对的形式(key:value) 属性名是字符串,因此可以把对象看成是字符串到值的映射 2.对象除了可以保持自有的属性,还可以从一个称为原型的对象继承属性.其中,原型链继承是JavaScript的核心特征. 3.对象是动态的,可以增加或删除属性. 4.除了字符串.数值.true.false.null和undefined,其它值都是对象. 5.对象最常见的用法是对其属性进行创建.…
1:Scala和Java的对比: 1.1:Scala中的函数是Java中完全没有的概念.因为Java是完全面向对象的编程语言,没有任何面向过程编程语言的特性,因此Java中的一等公民是类和对象,而且只有方法的概念,即寄存和依赖于类与对象中的方法.Java中的方法是绝对不可能脱离类和对象独立存在的. 1.2:Scala是一门既面向对象,又面向过程的语言.因此在Scala中有非常好的面向对象的特性,可以使用Scala来基于面向对象的思想开发大型复杂的系统和工程,而且Scala也面向过程,因此Scal…
1.对动画进行播放和暂停(从初始位置) (1).老版动画系统Animation 暂停 an["Take 001"].time = 0f; an["Take 001"].speed = 0f; an.Play("Take 001"); 播放 an["Take 001"].speed = 1f; an.Play("Take 001"); (2).新版动画系统Animator 暂停 Animator.Play(&…
深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06  材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 反向传播算法这里是用到 chain rule(链式法则)的,如下图所示: 这个应该没什么问题.大家都学过的. 我们知道总的loss 是由各个小的 loss 组合得到的,那么我们在求解 Loss 对每一个参数的微分的时候,只要对每一个 loss 都这么算就可以了.那么我们以后的例子都是以…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
原地址:http://www.9miao.com/question-15-54671.html 学习笔记一传送门学习笔记二传送门 学习笔记三导读:        笔记三主要就是各个模块的封装了,这里贴出各个模块一览表,封装完毕我就更新一个状态,并且补上模块说明 模块名方法名方法说明封装状态用户基础模块userModeluserLogin用于用户登陆时的方法已封装regUser注册用户的方法已封装heartCheck用户更新心跳时间的方法已封装heartCheck用户心跳检测的方法已封装funds…
深度学习word2vec笔记之算法篇 声明:  本文转自推酷中的一篇博文http://www.tuicool.com/articles/fmuyamf,若有错误望海涵 前言 在看word2vec的资料的时候,经常会被叫去看那几篇论文,而那几篇论文也没有系统地说明word2vec的具体原理和算法,所以老衲就斗胆整理了一个笔记,希望能帮助各位尽快理解word2vec的基本原理,避免浪费时间. 当然如果已经了解了,就随便看看得了. 一. CBOW加层次的网络结构与使用说明 Word2vec总共有两种类…
作者为falao_beiliu. 作者:杨超链接:http://www.zhihu.com/question/21661274/answer/19331979来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 最近几位google的研究人员发布了一个工具包叫word2vec,利用神经网络为单词寻找一个连续向量空间中的表示.这里整理一下思路,供有兴趣的同学参考. 这里先回顾一下大家比较熟悉的N-gram语言模型. 在自然语言任务里我们经常要计算一句话的概率.比如语音识别…
目录 认识Tensorflow Tensorflow特点 下载以及安装 Tensorflow初体验 Tensorflow进阶 图 op 会话 Feed操作 张量 变量 可视化学习Tensorboard 认识Tensorflow TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台…
深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning) 2018-08-09 12:21:33 The video tutorial can be found from: Model Agnostic Meta Learning Related Videos: My talk for Model Agnostic Meta Learning with domain adaptation Paper: https://arxiv.org/p…
深度学习课程笔记(九)VAE 相关推导和应用 2018-07-10 22:18:03 Reference: 1. TensorFlow code: https://jmetzen.github.io/2015-11-27/vae.html 2. Paper: https://arxiv.org/pdf/1312.6114.pdf…
深度学习课程笔记(七):模仿学习(imitation learning) 2017.12.10 本文所涉及到的 模仿学习,则是从给定的展示中进行学习.机器在这个过程中,也和环境进行交互,但是,并没有显示的得到 reward.在某些任务上,也很难定义 reward.如:自动驾驶,撞死一人,reward为多少,撞到一辆车,reward 为多少,撞到小动物,reward 为多少,撞到 X,reward 又是多少,诸如此类...而某些人类所定义的 reward,可能会造成不可控制的行为,如:我们想让 a…
深度学习课程笔记(十一)初探 Capsule Network  2018-02-01  15:58:52 一.先列出几个不错的 reference: 1. https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b 2. https://medium.com/ai%C2%B3-theory-practice-bus…
深度学习课程笔记(四)Gradient Descent 梯度下降算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html    我们知道在神经网络中,我们需要求解的是一个最小化的问题,即:最小化 loss function. 假设我们给定一组初始的参数 $\theta$,那么我们可以算出在当前参数下,这个loss是多少,即表示了这个参数到底有多不好. 然后我们利用上述式子来调整参数,其中梯度可以用▽的形式…
深度学习课程笔记(二)Classification: Probility Generative Model  2017.10.05 相关材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 本节主要讲解分类问题: classification 问题最常见的形式,就是给定一个输入,我们去学习一个函数,使得该函数,可以输出一个东西(label).如下所示: 其实好多其他的问题,都是分类问题演化而来,都可以通过分类问题来解决,如:物体…
深度学习课程笔记(一)CNN 解析篇 相关资料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html 首先提到 Why CNN for Image ? 综合上述三个特点,我们可以看到图像识别有如下的特色: =================================== 分割线 ======================================================= 以上就是整体上来感受下深度神经网络,接下…
之前已经介绍了$location服务的基本用法:angular学习笔记(三十一)-$location(1). 这篇是上一篇的进阶,介绍$location的配置,兼容各版本浏览器,等. *注意,这里介绍的是基于angular-1.3.2版本的,低版本的$location可能会有问题. hashbang模式和history api创建单页应用 首先,$location是用在单页应用里的...(废话,angular就是用在单页的)...所以,$location处理的是url改变,但是不刷新页面的情况.…
本篇介绍angular中的$location服务的基本用法,下一篇介绍它的复杂的用法. $location服务的主要作用是用于获取当前url以及改变当前的url,并且存入历史记录. 一. 获取url的相关方法: 以 'http://localhost/$location/21.1%20$location.html#/foo?name=bunny#myhash' 这个路径为例: 1. 获取当前完整的url路径: $location.absUrl():// http://localhost/$loc…
深度学习读书笔记之RBM 声明: 1)看到其他博客如@zouxy09都有个声明,老衲也抄袭一下这个东西 2)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 3)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的.如果某部分不小心侵犯了大家的利益,还望海涵,并联系老衲删除或修改,直到相关人士满意为止. 4)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢.…
amazeui学习笔记二(进阶开发5)--Web 组件开发规范Rules 一.总结 1.见名知意:见那些class名字知意,见函数名知意,见文件名知意 例如(HISTORY.md Web 组件更新历史记录.) 二.Web 组件开发规范Rules 目录 Web 组件样式组织 目录结构及说明 package.json README.md HISTORY.md src 目录 开发脚手架 调试预览 Web 组件基于 Amaze UI 基础库(CSS / JS)开发,在基础库已有样式.功能的基础上做更多扩…
amazeui学习笔记二(进阶开发2)--Web组件简介Web Component 一.总结 1.amaze ui:amaze ui是一个web 组件, 由模板(hbs).样式(LESS).交互(JS)三部分组成 二.Web组件简介Web Component Web 组件简介 目录 组件结构 分享组件 Web Components 颇令人向往,无奈浏览器支持有限,所以,Amaze UI Web 组件按照 Web Components 的实现形式,使用浏览器支持更为普及的技术,将移动开发中常用的组…
物联网学习笔记三:物联网网关协议比较:MQTT 和 Modbus 物联网 (IoT) 不只是新技术,还是与旧技术的集成,其关键在于通信.可用的通信方法各不相同,但是,各种不同的协议在将海量“事物”连接到互联网时发挥着重要的作用. 本文介绍了两种物联网补充协议:用于短距离设备连接的本地协议 Modbus 以及支持物联网进行全局通信的可扩展互联网协议“消息队列遥测传输 (MQTT)”. Modbus 是一个串行通信协议,首次出现于 1979 年,是连接行业设备实际使用的标准协议. MQTT 早在 2…
知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测. 快速R-CNN采用多项创新技术来提高训练和测试速度,同时提高检测精度. 采用VGG16的网络:VGG: 16 layers of 3x3 convolution interleaved with max pooling + 3 fully-connected layers Introduction 物体检测相对于图像分类是更复杂的,应为需要物体准确的位置…
SQL简介 SQL 支持下列类别的命令: 1.数据定义语言(DDL) 2.数据操纵语言(DML) 3.事务控制语言(TCL) 4.数据控制语言(DCL)  …
注意:每次对Tomcat配置文件进行修改后,必须重启Tomcat 在E盘的DATA文件夹中创建TomcatDemo文件夹,并将Tomcat安装路径下的webapps/ROOT中的WEB-INF文件夹复制到创建的TomcatDemo文件夹中.如下图: 在TomcatDemo的根目录下创建index.html文件,并且写入如下代码: <html> <title> JSP学习 </title> <body> <a>JSP学习笔记(三):简单的Tomca…
java之jvm学习笔记三(Class文件检验器) 前面的学习我们知道了class文件被类装载器所装载,但是在装载class文件之前或之后,class文件实际上还需要被校验,这就是今天的学习主题,class文件校验器. class文件 校验器,保证class文件内容有正确的内部结构,java虚拟机的class文件检验器在字节码执行之前对文件进行校验,而不是在执行中进行校验 class文件校验器要进行四趟独立的扫描来完成校验工作 class文件校验器分成四趟独立的扫描来完成校验. 第一趟 在装载字…
原文:VSTO学习笔记(三) 开发Office 2010 64位COM加载项 一.加载项简介 Office提供了多种用于扩展Office应用程序功能的模式,常见的有: 1.Office 自动化程序(Automation Executables) 2.Office加载项(COM or Excel Add-In) 3.Office文档代码或模板(Code Behind an Office Document or Template) 4.Office 智能标签(Smart Tags) 本次我们将学习使…
Java IO学习笔记三 在整个IO包中,实际上就是分为字节流和字符流,但是除了这两个流之外,还存在了一组字节流-字符流的转换类. OutputStreamWriter:是Writer的子类,将输出的字符流变为字节流,即:将一个字符流的输出对象变成字节流的输出对象. InputStreamReader:是Reader的子类,将输入的字节流变为字符流,即:将一个字节流的输入对象变成字符流的输入对象. 一般在操作输入输出内容就需要使用字节或字符流,但是有些时候需要将字符流变成字节流的形式,或者将字节…