Kmeans算法简介 作为无监督学习领域的一种简单的算法,Kmeans在实际应用中却是相当广泛的.其过程是通过不断交替迭代求得最优的类中心以及每个样本所属类别,具体步骤如下: 确定类别个数k 随机初始化k个类的中心,分别为(\mu_1, \mu_2, -, \mu_k ) 确定每个样本类别,原则为样本与类中心距离最小,即 \begin{aligned} c^{(i)}=\underset{j}{arg min}Dist(x^{(i)}, \mu_j) \end{aligned} 更新每个类的中心…
主要内容: 一.K-means算法简介 二.算法过程 三.随机初始化 四.二分K-means 四.K的选择 一.K-means算法简介 1.K-means算法是一种无监督学习算法.所谓无监督式学习,就是输入样本中只有x,没有y,即只有特征,而没有标签,通过这些特征对数据进行整合等操作.而更细化一点地说,K-means算法属于聚类算法.所谓聚类算法,就是根据特征上的相似性,把数据聚集在一起,或者说分成几类. 2.K-means算法作为聚类算法的一种,其工作自然也是“将数据分成几类”,其基本思路是:…
参考文献:https://www.jianshu.com/p/5314834f9f8e # -*- coding: utf-8 -*- """ Created on Mon Jun 11 10:52:14 2018 @author: Administrator """ import numpy as np import matplotlib.pyplot as plt from sklearn import datasets iris = dat…
写在前面:之前想分类图像的时候有看过k-means算法,当时一知半解的去使用,不懂原理不懂使用规则...显然最后失败了,然后看了<机器学习>这本书对k-means算法有了理论的认识,现在通过贾志刚老师的视频有了实际应用的理解. k-means算法原理 注:还是和之前一样,核心都是别人的,我只是知识的搬运工并且加上了自己的理解.弄完之后发现理论部分都是别人的~~没办法这算法太简单了... k-means含义:无监督的聚类算法. 无监督:就是不需要人干预,拿来一大批东西直接放进算法就可以进行分类.…
K-means(K均值)是基于数据划分的无监督聚类算法. 一.基本原理       聚类算法可以理解为无监督的分类方法,即样本集预先不知所属类别或标签,需要根据样本之间的距离或相似程度自动进行分类.聚类算法可以分为基于划分的方法.基于联通性的方法.基于概率分布模型的方法等,K-means属于基于划分的聚类方法. 基于划分的方法是将样本集组成的矢量空间划分为多个区域{Si}i=1k,每个区域都存在一个区域相关的表示{ci}i=1k,通常称为区域中心.对于每个样本,可以建立一种样本到区域中心的映射q…
时间过得很快,这篇文章已经是机器学习入门系列的最后一篇了.短短八周的时间里,虽然对机器学习并没有太多应用和熟悉的机会,但对于机器学习一些基本概念已经差不多有了一个提纲挈领的了解,如分类和回归,损失函数,以及一些简单的算法--kNN算法.决策树算法等. 那么,今天就用聚类和K-Means算法来结束我们这段机器学习之旅. 1. 聚类 1.1 什么是聚类 将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类.由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他…
K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习K-Means的优化变体方法.包括初始化优化K-Means++, 距离计算优化 elkan  K-Means 算法和大数据情况下的优化 Mini Batch K-Means算法. 聚类问题的一些概念: 无监督问题:我们的手里没有标签了 聚类:就是将相似的东西分到一组 聚类问题的难点:如何评估,如何调…
摘要:在数据挖掘中,K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. 在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. 问题 K-Means算法主要解决的问题如下图所示.我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Mea…
<机器学习实战>kMeans算法(K均值聚类算法) 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,希望通过某种算法来把一组未知类别的样本划分成若干类别,这在机器学习中被称作 unsupervised learning (无监督学习).在本文中,我们关注其中一个比较简单的聚类算法:k-means算法. k…
9. Clustering Content 9. Clustering 9.1 Supervised Learning and Unsupervised Learning 9.2 K-means algorithm(代码地址:https://github.com/llhthinker/MachineLearningLab/tree/master/K-Means) 9.3 Optimization objective 9.4 Random Initialization 9.5 Choosing t…