贝叶斯推断 && 概率编程初探】的更多相关文章

1. 写在之前的话 0x1:贝叶斯推断的思想 我们从一个例子开始我们本文的讨论.小明是一个编程老手,但是依然坚信bug仍有可能在代码中存在.于是,在实现了一段特别难的算法之后,他开始决定先来一个简单的测试用例,这个用例通过了.接着,他用了一个稍微复杂的测试用例,再次通过了.接下来更难的测试用例也通过了,这时,小明开始觉得这段代码出现bug的可能性大大大大降低了.... 上面这段白话文中,已经包含了最质朴的贝叶斯思想了!简单来说,贝叶斯推断是通过新得到的证据不断地更新我们的信念. 贝叶斯推断很少会…
贝叶斯推理的方法非常自然和极其强大.然而,大多数图书讨论贝叶斯推理,依赖于非常复杂的数学分析和人工的例子,使没有强大数学背景的人无法接触.<贝叶斯方法概率编程与贝叶斯推断>从编程.计算的角度来介绍贝叶斯推理,把贝叶斯理论和编程实践结合起来,使大多数程序员都可以入门并掌握.通过强大的Python语言库PyMC,以及相关的Python工具,包括NumPy\SciPy\Matplotlib讲解了概率编程.通过介绍的方法,只需付出很少的努力,就能掌握有效的贝叶斯分析方法. 学习参考: <贝叶斯方…
贝叶斯推断之最大后验概率(MAP) 本文详细记录贝叶斯后验概率分布的数学原理,基于贝叶斯后验概率实现一个二分类问题,谈谈我对贝叶斯推断的理解. 1. 二分类问题 给定N个样本的数据集,用\(X\)来表示,每个样本\(x_n\)有两个属性,最终属于某个分类\(t\) \(t=\left\{0,1\right\}\) \(\mathbf{x_n}=\begin{pmatrix}x_{n1} \\ x_{n2} \\ \end{pmatrix}\), 假设模型参数\(w=\begin{pmatrix}…
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完全有可能是运气问题.我们应该怎么办? 托马斯·贝叶斯(1702-1761),18世纪英国数学家,1742年成为英国皇家学会会员. 贝叶斯认为在实验之前,应根据不同的情况对硬币有所假设.不同的假设会得到不同的推断. 比如和滑不溜手的韦小宝玩.韦小宝可能拿出各种做过手脚的硬币,让我们猜不透,只能假设对硬…
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会有概率 贝叶斯的基础就是条件概率,条件概率的核心就是可能性空间的缩小,获取了新的信息就是个可能性空间缩小的过程 贝叶斯定理的核心就是,先验*似然=后验,有张图可以完美可视化这个定理 只要我们能得到可靠的先验或似然,任意一个,我们就能得到更可靠的后验概率 最近又在刷一个Coursera的课程:Baye…
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶斯公式,计算出…
C#编程实现 这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶…
1. 贝叶斯网理论部分 笔者在另一篇文章中对贝叶斯网的理论部分进行了总结,在本文中,我们重点关注其在具体场景里的应用. 2. 从概率预测问题说起 0x1:条件概率预测模型之困 我们知道,朴素贝叶斯分类器和Logistic regression模型都是产生概率估计来代替硬性的分类.对于每个类值,它们都是估计某个实例属于这个类的概率. 实际上,大多数其他机器学习分类器都可以转化为产生这类信息的模型,例如: 通过计算叶子节点上每类的相对频率,就能从决策树中得到概率 通过检验某条规则所覆盖的实例,就能从…
写在前面 这是HIT2019人工智能实验三,由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 实现贝叶斯网络的概率推导(Probabilistic Inference) 具体实验指导书见github 这里首先给出代码 知识部分 关于贝叶斯网络的学习,我参考的是这篇博客 贝叶斯网络(belief network) 这篇博客讲述的虽然全面,但细节部分,尤其是贝叶斯网络概率推导的具体实现部分,一笔带过.然而本次实验的要求就是实现贝叶斯网络的概率推导,因此我在学习完这篇博客的基础上,又把…
NeurIPS 2018 中的贝叶斯研究 WBLUE 2018年12月21日   雷锋网 AI 科技评论按:神经信息处理系统大会(NeurIPS)是人工智能领域最知名的学术会议之一,NeurIPS 2018 已于去年 12 月 3 日至 8 日在加拿大蒙特利尔市举办.来自 Zighra.com 的首席数据科学家在参加完此次会议之后,撰写了一篇关于贝叶斯研究的参会总结,雷锋网 AI 科技评论编译整理如下. 此次会议支持现场直播,所有讲座的视频内容均可以在 NeurIPS 的 Facebook 主页…