SACSegmentation封装了多种Ransac方法,包括: RandomSampleConsensus, LeastMedianSquares, MEstimatorSampleConsensus ProgressiveSampleConsensus, RandomizedRandomSampleConsensus, RandomizedMEstimatorSampleConsensus, MaximumLikelihoodSampleConsensus 1.PCL所谓的平行线判断,是已知…
RANSAC范例的正式描述如下: 首先,要给定: 1一个模型,该模型需要最少n个数据点去实例化它的自由参数: 2一组数据点P,P中包含数据点的数量#(P)大于n. 然后, 从P中随机地选择n个点(组成P的一个子集S1)并实例化这个模型(构造成M1). 接下来, 利用实例化的模型M1去测定P中点的某个子集S1*,这些点相对于M1的错误被限制在一个给定的阈值下,其中S1*被称作S1的一致性集合. 或者: 利用实例化的模型M1去逐个测定P中的其它点,舍掉那些偏离M1较大的点,保留那些偏离M1较小的点并…
在计算机视觉领域广泛的使用各种不同的采样一致性参数估计算法用于排除错误的样本,样本不同对应的应用不同,例如剔除错误的配准点对,分割出处在模型上的点集,PCL中以随机采样一致性算法(RANSAC)为核心,同时实现了五种类似与随机采样一致形算法的随机参数估计算法,例如随机采样一致性算法(RANSAC)最大似然一致性算法(MLESAC),最小中值方差一致性算法(LMEDS)等,所有估计参数算法都符合一致性原则.在PCL中设计的采样一致性算法的应用主要就是对点云进行分割,根据设定的不同的几个模型,估计对…
最近一个月的时间,基本上都在加班加点的写业务,在写代码的时候,也遇到了一个有趣的问题,值得记录一下. 简单来说,需求是从一个字典(python dict)中随机选出K个满足条件的key.代码如下(python2.7): def choose_items(item_dict, K, filter): '''item_dict = {id:info} ''' candidate_ids = [id for id in item_dict if filter(item_dict[id])] if le…
http://blog.csdn.net/pipisorry/article/details/51539739 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样来采样截断多维高斯分布的参数(已知一堆截断高斯分布的数据,推断其参数( μ , Σ )). 关于吉布斯采样的介绍文章都停止在吉布斯采样的详细描述上,如随机采样和随机模拟:吉布斯采样Gibbs Sampling(why)但并没有说明吉布斯采样到底如何实现的(how)? 也就是具体怎么实现从下面这个公式采样? 下面介绍如何为多维正态分布构…
http://blog.csdn.net/pipisorry/article/details/51525308 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样进行文档分类(聚类),当然更复杂的实现可以看看吉布斯采样是如何采样LDA主题分布的[主题模型TopicModel:隐含狄利克雷分布LDA]. 关于吉布斯采样的介绍文章都停止在吉布斯采样的详细描述上,如随机采样和随机模拟:吉布斯采样Gibbs Sampling(why)但并没有说明吉布斯采样到底如何实现的(how)? 也就是具体怎么实现…
http://blog.csdn.net/pipisorry/article/details/51373090 吉布斯采样算法详解 为什么要用吉布斯采样 通俗解释一下什么是sampling. sampling就是以一定的概率分布,看发生什么事件.举一个例子.甲只能E:吃饭.学习.打球,时间T:上午.下午.晚上,天气W:晴朗.刮风.下雨.现在要一个sample,这个sample可以是:打球+下午+晴朗...问题是我们不知道p(E,T,W),或者说,不知道三件事的联合分布.当然,如果知道的话,就没有…
随机重排序 import pandas as pd import numpy as np from pandas import Series df = pd.DataFrame(np.arange(5*4).reshape(5,4)) df 0 1 2 3 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 4 16 17 18 19 shuffle 的参数只能是 array_like,而 permutation 除了 array_like 还可以是 in…
hive> select * from account limit 10;OKaccount.accountname     account.accid   account.platid  account.dateid  account.createtime1004210 1004210 6       20180116        2018-01-16 10:39:50.020946754        20946754        0       20170913        2017…
最近在用SVM为分类器做实验,但是发现数据量太大(2000k条记录)但是训练时间过长...让我足足等了1天的啊!有人指导说可以先进行一下随机采样,再训练,这样对训练结果不会有太大影响(这个待考证).所以就对数据进行了一下降采样,具体方法如下: shuf data | 其中,我的数据是在txt文件中存储的,基本格式是: record xxxxx record xxxxx record xxxxx record xxxxx ........... record n xxxxx ===========…