原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorch系列(二) - PyTorch数据读取 PyTorch系列(三) - PyTorch网络构建 PyTorch系列(四) - PyTorch网络设置 参考: PyTorch documentation PyTorch 码源 本文首先介绍了有关预处理包的源码,接着介绍了在数据处理中的具体应用: 其主要…
本文内容:1. Xavier 初始化2. nn.init 中各种初始化函数3. He 初始化 torch.init https://pytorch.org/docs/stable/nn.html#torch-nn-init 1. 均匀分布torch.nn.init.uniform_(tensor, a=0, b=1)服从~U(a,b) U(a, b)U(a,b) 2. 正太分布torch.nn.init.normal_(tensor, mean=0, std=1)服从~N(mean,std) N…
安装之后把之前infobright的数据迁移到新安装的infobright上. 1:挺掉相关的服务 2:scp 把旧数据拷到新安装的infobright上 3:修改/etc/my-ib.cnf的数据目录 4:修改/etc/init.d/mysqld-ib 的相应数据目录 5:启动服务: Option: KNLevel, value: 99. Option: LicenseFile, value: <unknown>. Option: LoaderMainHeapSize, value: 320…
第一部分:分析篇 首先,看一下zico的页面,左侧是hostname panel,右侧是该主机对应的traces panel. 点击左侧zorka主机名,右侧panel会更新信息,在火狐浏览器中使用firebug插件我们可以看到请求的URL. 其中关键是第二条:/traces/search 根据/traces/search这个URL我们试着在代码中找找线索.可以看到TraceDataService类有@Path("/traces")注解,而其方法searchTraces上有 @Path…
DataLoader DataLoader(dataset,batch_size=1,shuffle=False,sampler=None, batch_sampler=None,num_workers=0,collate_fn=None,pin_memory=False, drop_last=False,timeout=0,work_init_fn=None) 常用参数说明: dataset: Dataset类 ( 详见下文数据集构建 ),可以自定义数据集或者读取pytorch自带数据集 ba…
整理一下看到的自定义数据读取的方法,较好的有一下三篇文章, 其实自定义的方法就是把现有数据集的train和test分别用 含有图像路径与label的list返回就好了,所以需要根据数据集随机应变. 所有图片都在一个文件夹1 之前刚开始用的时候,写Dataloader遇到不少坑.网上有一些教程 分为all images in one folder 和 each class one folder.后面的那种写的人比较多,我写一下前面的这种,程式化的东西,每次不同的任务改几个参数就好. 等训练的时候写…
​  前言  本文介绍了classdataset的几个要点,由哪些部分组成,每个部分需要完成哪些事情,如何进行数据增强,如何实现自己设计的数据增强.然后,介绍了分布式训练的数据加载方式,数据读取的整个流程,当面对超大数据集时,内存不足的改进思路. 本文延续了以往的写作态度和风格,即便是自己知道的内容,也仍然在写之前看了很多的文章来保证内容的正确性和全面性,因此写得极累,耗费时间较长.若有读者看完后觉得有所帮助,文末可以赞赏一点. 文末扫描二维码关注公众号CV技术指南 ,专注于计算机视觉的技术总结…
训练一个模型需要有一个数据库,一个网络,一个优化函数.数据读取是训练的第一步,以下是pytorch数据输入框架. 1)实例化一个数据库 假设我们已经定义了一个FaceLandmarksDataset数据库,此数据库将在以下建立. import FaceLandmarksDataset face_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv', root_dir='data/faces/', trans…
在炼丹时,数据的读取与预处理是关键一步.不同的模型所需要的数据以及预处理方式各不相同,如果每个轮子都我们自己写的话,是很浪费时间和精力的.Pytorch帮我们实现了方便的数据读取与预处理方法,下面记录两个DEMO,便于加快以后的代码效率. 根据数据是否一次性读取完,将DEMO分为: 1.串行式读取.也就是一次性读取完所有需要的数据到内存,模型训练时不会再访问外存.通常用在内存足够的情况下使用,速度更快. 2.并行式读取.也就是边训练边读取数据.通常用在内存不够的情况下使用,会占用计算资源,如果分…
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html 系列教程总目录传送门:我是一个传送门 本系列教程对应的 jupyter notebook 可以在我的Github仓库下载: 下载地址:https://github.com/Holy-Shine/Pytorch-notebook 1. 数据准备 数据下载通道: 点击这里下载数…