当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原因,采用一维高斯分布. 一维高斯分布的概率密度函数表示为: 多个高斯分布叠加在一起形成混合高斯分布: 其中:k 表示一共有 k 个子分布,.为什么累加之和为 1?因为哪怕是混合模型也表示一个概率密度,从负无穷到正无穷积分概率为 1,所以只有累加之和为 1才能保证,很简单的推导. 设总体 ξ,总体服从…